Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvintabd Structured version   Visualization version   Unicode version

Theorem cnvintabd 37909
Description: Value of the converse of the intersection of a non-empty class. (Contributed by RP, 20-Aug-2020.)
Hypothesis
Ref Expression
cnvintabd.x  |-  ( ph  ->  E. x ps )
Assertion
Ref Expression
cnvintabd  |-  ( ph  ->  `' |^| { x  |  ps }  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' x  /\  ps ) } )
Distinct variable groups:    ps, w    x, w
Allowed substitution hints:    ph( x, w)    ps( x)

Proof of Theorem cnvintabd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnvintabd.x . . . . . 6  |-  ( ph  ->  E. x ps )
2 pm5.5 351 . . . . . 6  |-  ( E. x ps  ->  (
( E. x ps 
->  y  e.  ( _V  X.  _V ) )  <-> 
y  e.  ( _V 
X.  _V ) ) )
31, 2syl 17 . . . . 5  |-  ( ph  ->  ( ( E. x ps  ->  y  e.  ( _V  X.  _V )
)  <->  y  e.  ( _V  X.  _V )
) )
43bicomd 213 . . . 4  |-  ( ph  ->  ( y  e.  ( _V  X.  _V )  <->  ( E. x ps  ->  y  e.  ( _V  X.  _V ) ) ) )
54anbi1d 741 . . 3  |-  ( ph  ->  ( ( y  e.  ( _V  X.  _V )  /\  A. x ( ps  ->  y  e.  `' x ) )  <->  ( ( E. x ps  ->  y  e.  ( _V  X.  _V ) )  /\  A. x ( ps  ->  y  e.  `' x ) ) ) )
6 elcnvintab 37908 . . 3  |-  ( y  e.  `' |^| { x  |  ps }  <->  ( y  e.  ( _V  X.  _V )  /\  A. x ( ps  ->  y  e.  `' x ) ) )
7 vex 3203 . . . 4  |-  y  e. 
_V
8 vex 3203 . . . . . 6  |-  x  e. 
_V
98cnvex 7113 . . . . 5  |-  `' x  e.  _V
10 relcnv 5503 . . . . . 6  |-  Rel  `' x
11 df-rel 5121 . . . . . 6  |-  ( Rel  `' x  <->  `' x  C_  ( _V 
X.  _V ) )
1210, 11mpbi 220 . . . . 5  |-  `' x  C_  ( _V  X.  _V )
139, 12elmapintrab 37882 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' x  /\  ps ) } 
<->  ( ( E. x ps  ->  y  e.  ( _V  X.  _V )
)  /\  A. x
( ps  ->  y  e.  `' x ) ) ) )
147, 13ax-mp 5 . . 3  |-  ( y  e.  |^| { w  e. 
~P ( _V  X.  _V )  |  E. x ( w  =  `' x  /\  ps ) } 
<->  ( ( E. x ps  ->  y  e.  ( _V  X.  _V )
)  /\  A. x
( ps  ->  y  e.  `' x ) ) )
155, 6, 143bitr4g 303 . 2  |-  ( ph  ->  ( y  e.  `' |^| { x  |  ps } 
<->  y  e.  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' x  /\  ps ) } ) )
1615eqrdv 2620 1  |-  ( ph  ->  `' |^| { x  |  ps }  =  |^| { w  e.  ~P ( _V  X.  _V )  |  E. x ( w  =  `' x  /\  ps ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475    X. cxp 5112   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  clcnvlem  37930
  Copyright terms: Public domain W3C validator