MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   Unicode version

Theorem elopg 4934
Description: Characterization of the elements of an ordered pair. Closed form of elop 4935. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  <. A ,  B >.  <->  ( C  =  { A }  \/  C  =  { A ,  B } ) ) )

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4400 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
2 eleq2 2690 . . 3  |-  ( <. A ,  B >.  =  { { A } ,  { A ,  B } }  ->  ( C  e.  <. A ,  B >.  <-> 
C  e.  { { A } ,  { A ,  B } } ) )
3 snex 4908 . . . 4  |-  { A }  e.  _V
4 prex 4909 . . . 4  |-  { A ,  B }  e.  _V
53, 4elpr2 4199 . . 3  |-  ( C  e.  { { A } ,  { A ,  B } }  <->  ( C  =  { A }  \/  C  =  { A ,  B } ) )
62, 5syl6bb 276 . 2  |-  ( <. A ,  B >.  =  { { A } ,  { A ,  B } }  ->  ( C  e.  <. A ,  B >.  <-> 
( C  =  { A }  \/  C  =  { A ,  B } ) ) )
71, 6syl 17 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  <. A ,  B >.  <->  ( C  =  { A }  \/  C  =  { A ,  B } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   {cpr 4179   <.cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  elop  4935  bj-inftyexpidisj  33097
  Copyright terms: Public domain W3C validator