| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpidisj | Structured version Visualization version Unicode version | ||
| Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inftyexpidisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4402 |
. . . . 5
| |
| 2 | df-bj-inftyexpi 33094 |
. . . . 5
| |
| 3 | opex 4932 |
. . . . 5
| |
| 4 | 1, 2, 3 | fvmpt 6282 |
. . . 4
|
| 5 | opex 4932 |
. . . . 5
| |
| 6 | 5, 2 | dmmpti 6023 |
. . . 4
|
| 7 | 4, 6 | eleq2s 2719 |
. . 3
|
| 8 | cnex 10017 |
. . . . . . 7
| |
| 9 | 8 | prid2 4298 |
. . . . . 6
|
| 10 | eqid 2622 |
. . . . . . . 8
| |
| 11 | 10 | olci 406 |
. . . . . . 7
|
| 12 | elopg 4934 |
. . . . . . . 8
| |
| 13 | 8, 12 | mpan2 707 |
. . . . . . 7
|
| 14 | 11, 13 | mpbiri 248 |
. . . . . 6
|
| 15 | en3lp 8513 |
. . . . . . 7
| |
| 16 | 15 | bj-imn3ani 32572 |
. . . . . 6
|
| 17 | 9, 14, 16 | sylancr 695 |
. . . . 5
|
| 18 | opprc1 4425 |
. . . . . 6
| |
| 19 | 0ncn 9954 |
. . . . . . 7
| |
| 20 | eleq1 2689 |
. . . . . . 7
| |
| 21 | 19, 20 | mtbiri 317 |
. . . . . 6
|
| 22 | 18, 21 | syl 17 |
. . . . 5
|
| 23 | 17, 22 | pm2.61i 176 |
. . . 4
|
| 24 | eqcom 2629 |
. . . . . 6
| |
| 25 | 24 | biimpi 206 |
. . . . 5
|
| 26 | 25 | eleq1d 2686 |
. . . 4
|
| 27 | 23, 26 | mtbii 316 |
. . 3
|
| 28 | 7, 27 | syl 17 |
. 2
|
| 29 | ndmfv 6218 |
. . . 4
| |
| 30 | 29 | eleq1d 2686 |
. . 3
|
| 31 | 19, 30 | mtbiri 317 |
. 2
|
| 32 | 28, 31 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-cnex 9992 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-c 9942 df-bj-inftyexpi 33094 |
| This theorem is referenced by: bj-ccinftydisj 33100 bj-pinftynrr 33109 bj-minftynrr 33113 |
| Copyright terms: Public domain | W3C validator |