Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   Unicode version

Theorem bj-inftyexpidisj 33097
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj  |-  -.  (inftyexpi  `  A )  e.  CC

Proof of Theorem bj-inftyexpidisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opeq1 4402 . . . . 5  |-  ( x  =  A  ->  <. x ,  CC >.  =  <. A ,  CC >. )
2 df-bj-inftyexpi 33094 . . . . 5  |- inftyexpi  =  ( x  e.  ( -u pi (,] pi )  |->  <.
x ,  CC >. )
3 opex 4932 . . . . 5  |-  <. A ,  CC >.  e.  _V
41, 2, 3fvmpt 6282 . . . 4  |-  ( A  e.  ( -u pi (,] pi )  ->  (inftyexpi  `  A )  =  <. A ,  CC >. )
5 opex 4932 . . . . 5  |-  <. x ,  CC >.  e.  _V
65, 2dmmpti 6023 . . . 4  |-  dom inftyexpi  =  (
-u pi (,] pi )
74, 6eleq2s 2719 . . 3  |-  ( A  e.  dom inftyexpi  ->  (inftyexpi  `  A
)  =  <. A ,  CC >. )
8 cnex 10017 . . . . . . 7  |-  CC  e.  _V
98prid2 4298 . . . . . 6  |-  CC  e.  { A ,  CC }
10 eqid 2622 . . . . . . . 8  |-  { A ,  CC }  =  { A ,  CC }
1110olci 406 . . . . . . 7  |-  ( { A ,  CC }  =  { A }  \/  { A ,  CC }  =  { A ,  CC } )
12 elopg 4934 . . . . . . . 8  |-  ( ( A  e.  _V  /\  CC  e.  _V )  -> 
( { A ,  CC }  e.  <. A ,  CC >. 
<->  ( { A ,  CC }  =  { A }  \/  { A ,  CC }  =  { A ,  CC } ) ) )
138, 12mpan2 707 . . . . . . 7  |-  ( A  e.  _V  ->  ( { A ,  CC }  e.  <. A ,  CC >.  <-> 
( { A ,  CC }  =  { A }  \/  { A ,  CC }  =  { A ,  CC } ) ) )
1411, 13mpbiri 248 . . . . . 6  |-  ( A  e.  _V  ->  { A ,  CC }  e.  <. A ,  CC >. )
15 en3lp 8513 . . . . . . 7  |-  -.  ( CC  e.  { A ,  CC }  /\  { A ,  CC }  e.  <. A ,  CC >.  /\  <. A ,  CC >.  e.  CC )
1615bj-imn3ani 32572 . . . . . 6  |-  ( ( CC  e.  { A ,  CC }  /\  { A ,  CC }  e.  <. A ,  CC >. )  ->  -.  <. A ,  CC >.  e.  CC )
179, 14, 16sylancr 695 . . . . 5  |-  ( A  e.  _V  ->  -.  <. A ,  CC >.  e.  CC )
18 opprc1 4425 . . . . . 6  |-  ( -.  A  e.  _V  ->  <. A ,  CC >.  =  (/) )
19 0ncn 9954 . . . . . . 7  |-  -.  (/)  e.  CC
20 eleq1 2689 . . . . . . 7  |-  ( <. A ,  CC >.  =  (/)  ->  ( <. A ,  CC >.  e.  CC  <->  (/)  e.  CC ) )
2119, 20mtbiri 317 . . . . . 6  |-  ( <. A ,  CC >.  =  (/)  ->  -.  <. A ,  CC >.  e.  CC )
2218, 21syl 17 . . . . 5  |-  ( -.  A  e.  _V  ->  -. 
<. A ,  CC >.  e.  CC )
2317, 22pm2.61i 176 . . . 4  |-  -.  <. A ,  CC >.  e.  CC
24 eqcom 2629 . . . . . 6  |-  ( (inftyexpi  `  A )  =  <. A ,  CC >.  <->  <. A ,  CC >.  =  (inftyexpi  `  A
) )
2524biimpi 206 . . . . 5  |-  ( (inftyexpi  `  A )  =  <. A ,  CC >.  ->  <. A ,  CC >.  =  (inftyexpi  `  A
) )
2625eleq1d 2686 . . . 4  |-  ( (inftyexpi  `  A )  =  <. A ,  CC >.  ->  ( <. A ,  CC >.  e.  CC  <->  (inftyexpi  `  A )  e.  CC ) )
2723, 26mtbii 316 . . 3  |-  ( (inftyexpi  `  A )  =  <. A ,  CC >.  ->  -.  (inftyexpi  `
 A )  e.  CC )
287, 27syl 17 . 2  |-  ( A  e.  dom inftyexpi  ->  -.  (inftyexpi  `  A )  e.  CC )
29 ndmfv 6218 . . . 4  |-  ( -.  A  e.  dom inftyexpi  ->  (inftyexpi  `  A )  =  (/) )
3029eleq1d 2686 . . 3  |-  ( -.  A  e.  dom inftyexpi  ->  (
(inftyexpi  `  A )  e.  CC  <->  (/)  e.  CC ) )
3119, 30mtbiri 317 . 2  |-  ( -.  A  e.  dom inftyexpi  ->  -.  (inftyexpi  `
 A )  e.  CC )
3228, 31pm2.61i 176 1  |-  -.  (inftyexpi  `  A )  e.  CC
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   dom cdm 5114   ` cfv 5888  (class class class)co 6650   CCcc 9934   -ucneg 10267   (,]cioc 12176   picpi 14797  inftyexpi cinftyexpi 33093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-c 9942  df-bj-inftyexpi 33094
This theorem is referenced by:  bj-ccinftydisj  33100  bj-pinftynrr  33109  bj-minftynrr  33113
  Copyright terms: Public domain W3C validator