Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpcliN Structured version   Visualization version   Unicode version

Theorem elpcliN 35179
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpcli.s  |-  S  =  ( PSubSp `  K )
elpcli.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
elpcliN  |-  ( ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  /\  Q  e.  ( U `  X )
)  ->  Q  e.  Y )

Proof of Theorem elpcliN
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  K  e.  V )
2 simp2 1062 . . . . . . 7  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  X  C_  Y )
3 eqid 2622 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 elpcli.s . . . . . . . . 9  |-  S  =  ( PSubSp `  K )
53, 4psubssat 35040 . . . . . . . 8  |-  ( ( K  e.  V  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K ) )
653adant2 1080 . . . . . . 7  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  Y  C_  ( Atoms `  K )
)
72, 6sstrd 3613 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  X  C_  ( Atoms `  K )
)
8 elpcli.c . . . . . . 7  |-  U  =  ( PCl `  K
)
93, 4, 8pclvalN 35176 . . . . . 6  |-  ( ( K  e.  V  /\  X  C_  ( Atoms `  K
) )  ->  ( U `  X )  =  |^| { z  e.  S  |  X  C_  z } )
101, 7, 9syl2anc 693 . . . . 5  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  ( U `  X )  =  |^| { z  e.  S  |  X  C_  z } )
1110eleq2d 2687 . . . 4  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  ( Q  e.  ( U `  X )  <->  Q  e.  |^|
{ z  e.  S  |  X  C_  z } ) )
12 elintrabg 4489 . . . . 5  |-  ( Q  e.  |^| { z  e.  S  |  X  C_  z }  ->  ( Q  e.  |^| { z  e.  S  |  X  C_  z }  <->  A. z  e.  S  ( X  C_  z  ->  Q  e.  z )
) )
1312ibi 256 . . . 4  |-  ( Q  e.  |^| { z  e.  S  |  X  C_  z }  ->  A. z  e.  S  ( X  C_  z  ->  Q  e.  z ) )
1411, 13syl6bi 243 . . 3  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  ( Q  e.  ( U `  X )  ->  A. z  e.  S  ( X  C_  z  ->  Q  e.  z ) ) )
15 sseq2 3627 . . . . . . . 8  |-  ( z  =  Y  ->  ( X  C_  z  <->  X  C_  Y
) )
16 eleq2 2690 . . . . . . . 8  |-  ( z  =  Y  ->  ( Q  e.  z  <->  Q  e.  Y ) )
1715, 16imbi12d 334 . . . . . . 7  |-  ( z  =  Y  ->  (
( X  C_  z  ->  Q  e.  z )  <-> 
( X  C_  Y  ->  Q  e.  Y ) ) )
1817rspccv 3306 . . . . . 6  |-  ( A. z  e.  S  ( X  C_  z  ->  Q  e.  z )  ->  ( Y  e.  S  ->  ( X  C_  Y  ->  Q  e.  Y ) ) )
1918com13 88 . . . . 5  |-  ( X 
C_  Y  ->  ( Y  e.  S  ->  ( A. z  e.  S  ( X  C_  z  ->  Q  e.  z )  ->  Q  e.  Y ) ) )
2019imp 445 . . . 4  |-  ( ( X  C_  Y  /\  Y  e.  S )  ->  ( A. z  e.  S  ( X  C_  z  ->  Q  e.  z )  ->  Q  e.  Y ) )
21203adant1 1079 . . 3  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  ( A. z  e.  S  ( X  C_  z  ->  Q  e.  z )  ->  Q  e.  Y ) )
2214, 21syld 47 . 2  |-  ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  ->  ( Q  e.  ( U `  X )  ->  Q  e.  Y ) )
2322imp 445 1  |-  ( ( ( K  e.  V  /\  X  C_  Y  /\  Y  e.  S )  /\  Q  e.  ( U `  X )
)  ->  Q  e.  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   |^|cint 4475   ` cfv 5888   Atomscatm 34550   PSubSpcpsubsp 34782   PClcpclN 35173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-psubsp 34789  df-pclN 35174
This theorem is referenced by:  pclfinclN  35236
  Copyright terms: Public domain W3C validator