MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eclclwwlksn1 Structured version   Visualization version   Unicode version

Theorem eclclwwlksn1 26952
Description: An equivalence class according to  .~. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlksn.w  |-  W  =  ( N ClWWalksN  G )
erclwwlksn.r  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
Assertion
Ref Expression
eclclwwlksn1  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) } ) )
Distinct variable groups:    t, W, u    n, N, u, t, x, y    n, W   
x,  .~ , y    x, W   
x, G    x, X    x, B, y    y, N   
y, W    y, X
Allowed substitution hints:    B( u, t, n)    .~ ( u, t, n)    G( y, u, t, n)    X( u, t, n)

Proof of Theorem eclclwwlksn1
StepHypRef Expression
1 elqsecl 7801 . 2  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  { y  |  x  .~  y } ) )
2 erclwwlksn.w . . . . . . . . 9  |-  W  =  ( N ClWWalksN  G )
3 erclwwlksn.r . . . . . . . . 9  |-  .~  =  { <. t ,  u >.  |  ( t  e.  W  /\  u  e.  W  /\  E. n  e.  ( 0 ... N
) t  =  ( u cyclShift  n ) ) }
42, 3erclwwlksnsym 26947 . . . . . . . 8  |-  ( x  .~  y  ->  y  .~  x )
52, 3erclwwlksnsym 26947 . . . . . . . 8  |-  ( y  .~  x  ->  x  .~  y )
64, 5impbii 199 . . . . . . 7  |-  ( x  .~  y  <->  y  .~  x )
76a1i 11 . . . . . 6  |-  ( ( B  e.  X  /\  x  e.  W )  ->  ( x  .~  y  <->  y  .~  x ) )
87abbidv 2741 . . . . 5  |-  ( ( B  e.  X  /\  x  e.  W )  ->  { y  |  x  .~  y }  =  { y  |  y  .~  x } )
9 vex 3203 . . . . . . . 8  |-  y  e. 
_V
10 vex 3203 . . . . . . . 8  |-  x  e. 
_V
112, 3erclwwlksneq 26944 . . . . . . . 8  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  ( y  .~  x  <->  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) ) )
129, 10, 11mp2an 708 . . . . . . 7  |-  ( y  .~  x  <->  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) ) )
1312a1i 11 . . . . . 6  |-  ( ( B  e.  X  /\  x  e.  W )  ->  ( y  .~  x  <->  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) ) )
1413abbidv 2741 . . . . 5  |-  ( ( B  e.  X  /\  x  e.  W )  ->  { y  |  y  .~  x }  =  { y  |  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) } )
15 3anan12 1051 . . . . . . . 8  |-  ( ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) )  <->  ( x  e.  W  /\  (
y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) ) )
16 ibar 525 . . . . . . . . . 10  |-  ( x  e.  W  ->  (
( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) )  <->  ( x  e.  W  /\  (
y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) ) ) )
1716bicomd 213 . . . . . . . . 9  |-  ( x  e.  W  ->  (
( x  e.  W  /\  ( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) ) )  <-> 
( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) ) ) )
1817adantl 482 . . . . . . . 8  |-  ( ( B  e.  X  /\  x  e.  W )  ->  ( ( x  e.  W  /\  ( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) )  <->  ( y  e.  W  /\  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) ) ) )
1915, 18syl5bb 272 . . . . . . 7  |-  ( ( B  e.  X  /\  x  e.  W )  ->  ( ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) )  <->  ( y  e.  W  /\  E. n  e.  ( 0 ... N
) y  =  ( x cyclShift  n ) ) ) )
2019abbidv 2741 . . . . . 6  |-  ( ( B  e.  X  /\  x  e.  W )  ->  { y  |  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) }  =  { y  |  ( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) } )
21 df-rab 2921 . . . . . 6  |-  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) }  =  {
y  |  ( y  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) }
2220, 21syl6eqr 2674 . . . . 5  |-  ( ( B  e.  X  /\  x  e.  W )  ->  { y  |  ( y  e.  W  /\  x  e.  W  /\  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) ) }  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) } )
238, 14, 223eqtrd 2660 . . . 4  |-  ( ( B  e.  X  /\  x  e.  W )  ->  { y  |  x  .~  y }  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) } )
2423eqeq2d 2632 . . 3  |-  ( ( B  e.  X  /\  x  e.  W )  ->  ( B  =  {
y  |  x  .~  y }  <->  B  =  {
y  e.  W  |  E. n  e.  (
0 ... N ) y  =  ( x cyclShift  n
) } ) )
2524rexbidva 3049 . 2  |-  ( B  e.  X  ->  ( E. x  e.  W  B  =  { y  |  x  .~  y } 
<->  E. x  e.  W  B  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n
) } ) )
261, 25bitrd 268 1  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  { y  e.  W  |  E. n  e.  ( 0 ... N ) y  =  ( x cyclShift  n ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   _Vcvv 3200   class class class wbr 4653   {copab 4712  (class class class)co 6650   /.cqs 7741   0cc0 9936   ...cfz 12326   cyclShift ccsh 13534   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  eleclclwwlksn  26953  hashecclwwlksn1  26954  umgrhashecclwwlk  26955
  Copyright terms: Public domain W3C validator