![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrabsf | Structured version Visualization version Unicode version |
Description: Membership in a
restricted class abstraction, expressed with explicit
class substitution. (The variation elrabf 3360 has implicit substitution).
The hypothesis specifies that ![]() ![]() |
Ref | Expression |
---|---|
elrabsf.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elrabsf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3437 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elrabsf.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | nfcv 2764 |
. . 3
![]() ![]() ![]() ![]() | |
4 | nfv 1843 |
. . 3
![]() ![]() ![]() ![]() | |
5 | nfsbc1v 3455 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | sbceq1a 3446 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 2, 3, 4, 5, 6 | cbvrab 3198 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | elrab2 3366 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-sbc 3436 |
This theorem is referenced by: wfisg 5715 onminesb 6998 mpt2xopovel 7346 ac6num 9301 hashrabsn1 13163 bnj23 30784 bnj1204 31080 tfisg 31716 frinsg 31742 rabrenfdioph 37378 |
Copyright terms: Public domain | W3C validator |