| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfisg | Structured version Visualization version Unicode version | ||
| Description: Well-Founded Induction
Schema. If a property passes from all elements
less than |
| Ref | Expression |
|---|---|
| wfisg.1 |
|
| Ref | Expression |
|---|---|
| wfisg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3687 |
. . 3
| |
| 2 | dfss3 3592 |
. . . . . . . 8
| |
| 3 | nfcv 2764 |
. . . . . . . . . . 11
| |
| 4 | 3 | elrabsf 3474 |
. . . . . . . . . 10
|
| 5 | 4 | simprbi 480 |
. . . . . . . . 9
|
| 6 | 5 | ralimi 2952 |
. . . . . . . 8
|
| 7 | 2, 6 | sylbi 207 |
. . . . . . 7
|
| 8 | nfv 1843 |
. . . . . . . . 9
| |
| 9 | nfcv 2764 |
. . . . . . . . . . 11
| |
| 10 | nfsbc1v 3455 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | nfral 2945 |
. . . . . . . . . 10
|
| 12 | nfsbc1v 3455 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | nfim 1825 |
. . . . . . . . 9
|
| 14 | 8, 13 | nfim 1825 |
. . . . . . . 8
|
| 15 | eleq1 2689 |
. . . . . . . . 9
| |
| 16 | predeq3 5684 |
. . . . . . . . . . 11
| |
| 17 | 16 | raleqdv 3144 |
. . . . . . . . . 10
|
| 18 | sbceq1a 3446 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | imbi12d 334 |
. . . . . . . . 9
|
| 20 | 15, 19 | imbi12d 334 |
. . . . . . . 8
|
| 21 | wfisg.1 |
. . . . . . . 8
| |
| 22 | 14, 20, 21 | chvar 2262 |
. . . . . . 7
|
| 23 | 7, 22 | syl5 34 |
. . . . . 6
|
| 24 | 23 | anc2li 580 |
. . . . 5
|
| 25 | 3 | elrabsf 3474 |
. . . . 5
|
| 26 | 24, 25 | syl6ibr 242 |
. . . 4
|
| 27 | 26 | rgen 2922 |
. . 3
|
| 28 | wfi 5713 |
. . 3
| |
| 29 | 1, 27, 28 | mpanr12 721 |
. 2
|
| 30 | rabid2 3118 |
. 2
| |
| 31 | 29, 30 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 |
| This theorem is referenced by: wfis 5716 wfis2fg 5717 |
| Copyright terms: Public domain | W3C validator |