MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2xopovel Structured version   Visualization version   Unicode version

Theorem mpt2xopovel 7346
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpt2xopovel  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y    x, N, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)    N( n)

Proof of Theorem mpt2xopovel
StepHypRef Expression
1 mpt2xopoveq.f . . . 4  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21mpt2xopn0yelv 7339 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
32pm4.71rd 667 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) ) ) )
41mpt2xopoveq 7345 . . . . . 6  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
54eleq2d 2687 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } ) )
6 nfcv 2764 . . . . . . 7  |-  F/_ n V
76elrabsf 3474 . . . . . 6  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
8 sbccom 3509 . . . . . . . 8  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph )
9 sbccom 3509 . . . . . . . . 9  |-  ( [. N  /  n ]. [. K  /  y ]. ph  <->  [. K  / 
y ]. [. N  /  n ]. ph )
109sbcbii 3491 . . . . . . . 8  |-  ( [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
118, 10bitri 264 . . . . . . 7  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
1211anbi2i 730 . . . . . 6  |-  ( ( N  e.  V  /\  [. N  /  n ]. [.
<. V ,  W >.  /  x ]. [. K  /  y ]. ph )  <->  ( N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
)
137, 12bitri 264 . . . . 5  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) )
145, 13syl6bb 276 . . . 4  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
1514pm5.32da 673 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) ) )
16 3anass 1042 . . 3  |-  ( ( K  e.  V  /\  N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )  <->  ( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
1715, 16syl6bbr 278 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
183, 17bitrd 268 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [.wsbc 3435   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator