Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   Unicode version

Theorem elsigagen2 30211
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  U. B  e.  (sigaGen `  A )
)

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  A  e.  V )
21sgsiga 30205 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  (sigaGen `  A
)  e.  U. ran sigAlgebra )
3 sssigagen 30208 . . . 4  |-  ( A  e.  V  ->  A  C_  (sigaGen `  A )
)
4 sspwb 4917 . . . . 5  |-  ( A 
C_  (sigaGen `  A )  <->  ~P A  C_  ~P (sigaGen `  A ) )
54biimpi 206 . . . 4  |-  ( A 
C_  (sigaGen `  A )  ->  ~P A  C_  ~P (sigaGen `  A ) )
61, 3, 53syl 18 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  ~P A  C_ 
~P (sigaGen `  A )
)
7 simp2 1062 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  B  C_  A )
8 simp3 1063 . . . . 5  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  B  ~<_  om )
9 ctex 7970 . . . . 5  |-  ( B  ~<_  om  ->  B  e.  _V )
10 elpwg 4166 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
118, 9, 103syl 18 . . . 4  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  ( B  e.  ~P A  <->  B  C_  A
) )
127, 11mpbird 247 . . 3  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  B  e. 
~P A )
136, 12sseldd 3604 . 2  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  B  e. 
~P (sigaGen `  A )
)
14 sigaclcu 30180 . 2  |-  ( ( (sigaGen `  A )  e.  U. ran sigAlgebra  /\  B  e. 
~P (sigaGen `  A )  /\  B  ~<_  om )  ->  U. B  e.  (sigaGen `  A ) )
152, 13, 8, 14syl3anc 1326 1  |-  ( ( A  e.  V  /\  B  C_  A  /\  B  ~<_  om )  ->  U. B  e.  (sigaGen `  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   ran crn 5115   ` cfv 5888   omcom 7065    ~<_ cdom 7953  sigAlgebracsiga 30170  sigaGencsigagen 30201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-dom 7957  df-siga 30171  df-sigagen 30202
This theorem is referenced by:  sxbrsigalem1  30347
  Copyright terms: Public domain W3C validator