| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvvv | Structured version Visualization version Unicode version | ||
| Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.) |
| Ref | Expression |
|---|---|
| elvvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5131 |
. 2
| |
| 2 | ancom 466 |
. . . . . 6
| |
| 3 | 2 | 2exbii 1775 |
. . . . 5
|
| 4 | 19.42vv 1920 |
. . . . . 6
| |
| 5 | elvv 5177 |
. . . . . . 7
| |
| 6 | 5 | anbi2i 730 |
. . . . . 6
|
| 7 | vex 3203 |
. . . . . . 7
| |
| 8 | 7 | biantru 526 |
. . . . . 6
|
| 9 | 4, 6, 8 | 3bitr2i 288 |
. . . . 5
|
| 10 | anass 681 |
. . . . 5
| |
| 11 | 3, 9, 10 | 3bitrri 287 |
. . . 4
|
| 12 | 11 | 2exbii 1775 |
. . 3
|
| 13 | exrot4 2046 |
. . 3
| |
| 14 | excom 2042 |
. . . . 5
| |
| 15 | opex 4932 |
. . . . . . 7
| |
| 16 | opeq1 4402 |
. . . . . . . 8
| |
| 17 | 16 | eqeq2d 2632 |
. . . . . . 7
|
| 18 | 15, 17 | ceqsexv 3242 |
. . . . . 6
|
| 19 | 18 | exbii 1774 |
. . . . 5
|
| 20 | 14, 19 | bitri 264 |
. . . 4
|
| 21 | 20 | 2exbii 1775 |
. . 3
|
| 22 | 12, 13, 21 | 3bitr2i 288 |
. 2
|
| 23 | 1, 22 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: ssrelrel 5220 dftpos3 7370 |
| Copyright terms: Public domain | W3C validator |