| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrelrel | Structured version Visualization version Unicode version | ||
| Description: A subclass relationship determined by ordered triples. Use relrelss 5659 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssrelrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3597 |
. . . 4
| |
| 2 | 1 | alrimiv 1855 |
. . 3
|
| 3 | 2 | alrimivv 1856 |
. 2
|
| 4 | elvvv 5178 |
. . . . . . . 8
| |
| 5 | eleq1 2689 |
. . . . . . . . . . . . . 14
| |
| 6 | eleq1 2689 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | imbi12d 334 |
. . . . . . . . . . . . 13
|
| 8 | 7 | biimprcd 240 |
. . . . . . . . . . . 12
|
| 9 | 8 | alimi 1739 |
. . . . . . . . . . 11
|
| 10 | 19.23v 1902 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylib 208 |
. . . . . . . . . 10
|
| 12 | 11 | 2alimi 1740 |
. . . . . . . . 9
|
| 13 | 19.23vv 1903 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylib 208 |
. . . . . . . 8
|
| 15 | 4, 14 | syl5bi 232 |
. . . . . . 7
|
| 16 | 15 | com23 86 |
. . . . . 6
|
| 17 | 16 | a2d 29 |
. . . . 5
|
| 18 | 17 | alimdv 1845 |
. . . 4
|
| 19 | dfss2 3591 |
. . . 4
| |
| 20 | dfss2 3591 |
. . . 4
| |
| 21 | 18, 19, 20 | 3imtr4g 285 |
. . 3
|
| 22 | 21 | com12 32 |
. 2
|
| 23 | 3, 22 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: eqrelrel 5221 |
| Copyright terms: Public domain | W3C validator |