| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epelg | Structured version Visualization version Unicode version | ||
| Description: The epsilon relation and membership are the same. General version of epel 5032. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| epelg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 |
. . . 4
| |
| 2 | elopab 4983 |
. . . . . 6
| |
| 3 | vex 3203 |
. . . . . . . . . . 11
| |
| 4 | vex 3203 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | pm3.2i 471 |
. . . . . . . . . 10
|
| 6 | opeqex 4962 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mpbiri 248 |
. . . . . . . . 9
|
| 8 | 7 | simpld 475 |
. . . . . . . 8
|
| 9 | 8 | adantr 481 |
. . . . . . 7
|
| 10 | 9 | exlimivv 1860 |
. . . . . 6
|
| 11 | 2, 10 | sylbi 207 |
. . . . 5
|
| 12 | df-eprel 5029 |
. . . . 5
| |
| 13 | 11, 12 | eleq2s 2719 |
. . . 4
|
| 14 | 1, 13 | sylbi 207 |
. . 3
|
| 15 | 14 | a1i 11 |
. 2
|
| 16 | elex 3212 |
. . 3
| |
| 17 | 16 | a1i 11 |
. 2
|
| 18 | eleq12 2691 |
. . . 4
| |
| 19 | 18, 12 | brabga 4989 |
. . 3
|
| 20 | 19 | expcom 451 |
. 2
|
| 21 | 15, 17, 20 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 |
| This theorem is referenced by: epelc 5031 efrirr 5095 efrn2lp 5096 predep 5706 epne3 6980 cnfcomlem 8596 fpwwe2lem6 9457 ltpiord 9709 orvcelval 30530 brcnvep 34029 |
| Copyright terms: Public domain | W3C validator |