MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcomlem Structured version   Visualization version   Unicode version

Theorem cnfcomlem 8596
Description: Lemma for cnfcom 8597. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.1  |-  ( ph  ->  I  e.  dom  G
)
cnfcom.2  |-  ( ph  ->  O  e.  ( om 
^o  ( G `  I ) ) )
cnfcom.3  |-  ( ph  ->  ( T `  I
) : ( H `
 I ) -1-1-onto-> O )
Assertion
Ref Expression
cnfcomlem  |-  ( ph  ->  ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) )
Distinct variable groups:    x, k,
z, A    k, I, x, z    x, M    f,
k, x, z, F   
z, T    f, G, k, x, z    f, H, x    S, k, z
Allowed substitution hints:    ph( x, z, f, k)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    I( f)    K( x, z, f, k)    M( z, f, k)    O( x, z, f, k)

Proof of Theorem cnfcomlem
Dummy variables  u  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 8543 . . . . . . 7  |-  om  e.  On
2 cnfcom.a . . . . . . . 8  |-  ( ph  ->  A  e.  On )
3 suppssdm 7308 . . . . . . . . . 10  |-  ( F supp  (/) )  C_  dom  F
4 cnfcom.f . . . . . . . . . . . . . 14  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.s . . . . . . . . . . . . . . . . 17  |-  S  =  dom  ( om CNF  A
)
61a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  om  e.  On )
75, 6, 2cantnff1o 8593 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
8 f1ocnv 6149 . . . . . . . . . . . . . . . 16  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
9 f1of 6137 . . . . . . . . . . . . . . . 16  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
107, 8, 93syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
11 cnfcom.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
1210, 11ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
134, 12syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  S )
145, 6, 2cantnfs 8563 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  S  <->  ( F : A --> om  /\  F finSupp 
(/) ) ) )
1513, 14mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> om  /\  F finSupp  (/) ) )
1615simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> om )
17 fdm 6051 . . . . . . . . . . 11  |-  ( F : A --> om  ->  dom 
F  =  A )
1816, 17syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
193, 18syl5sseq 3653 . . . . . . . . 9  |-  ( ph  ->  ( F supp  (/) )  C_  A )
20 cnfcom.1 . . . . . . . . . 10  |-  ( ph  ->  I  e.  dom  G
)
21 cnfcom.g . . . . . . . . . . . 12  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
2221oif 8435 . . . . . . . . . . 11  |-  G : dom  G --> ( F supp  (/) )
2322ffvelrni 6358 . . . . . . . . . 10  |-  ( I  e.  dom  G  -> 
( G `  I
)  e.  ( F supp  (/) ) )
2420, 23syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  I
)  e.  ( F supp  (/) ) )
2519, 24sseldd 3604 . . . . . . . 8  |-  ( ph  ->  ( G `  I
)  e.  A )
26 onelon 5748 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( G `  I )  e.  A )  -> 
( G `  I
)  e.  On )
272, 25, 26syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( G `  I
)  e.  On )
28 oecl 7617 . . . . . . 7  |-  ( ( om  e.  On  /\  ( G `  I )  e.  On )  -> 
( om  ^o  ( G `  I )
)  e.  On )
291, 27, 28sylancr 695 . . . . . 6  |-  ( ph  ->  ( om  ^o  ( G `  I )
)  e.  On )
3016, 25ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  ( G `  I )
)  e.  om )
31 nnon 7071 . . . . . . 7  |-  ( ( F `  ( G `
 I ) )  e.  om  ->  ( F `  ( G `  I ) )  e.  On )
3230, 31syl 17 . . . . . 6  |-  ( ph  ->  ( F `  ( G `  I )
)  e.  On )
33 omcl 7616 . . . . . 6  |-  ( ( ( om  ^o  ( G `  I )
)  e.  On  /\  ( F `  ( G `
 I ) )  e.  On )  -> 
( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  e.  On )
3429, 32, 33syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  e.  On )
355, 6, 2, 21, 13cantnfcl 8564 . . . . . . . 8  |-  ( ph  ->  (  _E  We  ( F supp 
(/) )  /\  dom  G  e.  om ) )
3635simprd 479 . . . . . . 7  |-  ( ph  ->  dom  G  e.  om )
37 elnn 7075 . . . . . . 7  |-  ( ( I  e.  dom  G  /\  dom  G  e.  om )  ->  I  e.  om )
3820, 36, 37syl2anc 693 . . . . . 6  |-  ( ph  ->  I  e.  om )
39 cnfcom.h . . . . . . . 8  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
4039cantnfvalf 8562 . . . . . . 7  |-  H : om
--> On
4140ffvelrni 6358 . . . . . 6  |-  ( I  e.  om  ->  ( H `  I )  e.  On )
4238, 41syl 17 . . . . 5  |-  ( ph  ->  ( H `  I
)  e.  On )
43 eqid 2622 . . . . . 6  |-  ( ( y  e.  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) )  =  ( ( y  e.  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) )
4443oacomf1o 7645 . . . . 5  |-  ( ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  e.  On  /\  ( H `  I )  e.  On )  ->  (
( y  e.  ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) ) : ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  ( H `  I )
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) ) )
4534, 42, 44syl2anc 693 . . . 4  |-  ( ph  ->  ( ( y  e.  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) ) : ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  ( H `  I )
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) ) )
46 cnfcom.t . . . . . . . 8  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
4746seqomsuc 7552 . . . . . . 7  |-  ( I  e.  om  ->  ( T `  suc  I )  =  ( I ( k  e.  _V , 
f  e.  _V  |->  K ) ( T `  I ) ) )
4838, 47syl 17 . . . . . 6  |-  ( ph  ->  ( T `  suc  I )  =  ( I ( k  e. 
_V ,  f  e. 
_V  |->  K ) ( T `  I ) ) )
49 nfcv 2764 . . . . . . . . 9  |-  F/_ u K
50 nfcv 2764 . . . . . . . . 9  |-  F/_ v K
51 nfcv 2764 . . . . . . . . 9  |-  F/_ k
( ( y  e.  ( ( om  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) )  u.  `' ( y  e. 
dom  v  |->  ( ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) )  +o  y ) ) )
52 nfcv 2764 . . . . . . . . 9  |-  F/_ f
( ( y  e.  ( ( om  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) )  u.  `' ( y  e. 
dom  v  |->  ( ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) )  +o  y ) ) )
53 cnfcom.k . . . . . . . . . 10  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
54 oveq2 6658 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( dom  f  +o  x
)  =  ( dom  f  +o  y ) )
5554cbvmptv 4750 . . . . . . . . . . . 12  |-  ( x  e.  M  |->  ( dom  f  +o  x ) )  =  ( y  e.  M  |->  ( dom  f  +o  y ) )
56 cnfcom.m . . . . . . . . . . . . . 14  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
57 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( k  =  u  /\  f  =  v )  ->  k  =  u )
5857fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( k  =  u  /\  f  =  v )  ->  ( G `  k
)  =  ( G `
 u ) )
5958oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( k  =  u  /\  f  =  v )  ->  ( om  ^o  ( G `  k )
)  =  ( om 
^o  ( G `  u ) ) )
6058fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( k  =  u  /\  f  =  v )  ->  ( F `  ( G `  k )
)  =  ( F `
 ( G `  u ) ) )
6159, 60oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( k  =  u  /\  f  =  v )  ->  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  =  ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) ) )
6256, 61syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( k  =  u  /\  f  =  v )  ->  M  =  ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) ) )
63 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( k  =  u  /\  f  =  v )  ->  f  =  v )
6463dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( ( k  =  u  /\  f  =  v )  ->  dom  f  =  dom  v )
6564oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ( k  =  u  /\  f  =  v )  ->  ( dom  f  +o  y )  =  ( dom  v  +o  y
) )
6662, 65mpteq12dv 4733 . . . . . . . . . . . 12  |-  ( ( k  =  u  /\  f  =  v )  ->  ( y  e.  M  |->  ( dom  f  +o  y ) )  =  ( y  e.  ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) ) )
6755, 66syl5eq 2668 . . . . . . . . . . 11  |-  ( ( k  =  u  /\  f  =  v )  ->  ( x  e.  M  |->  ( dom  f  +o  x ) )  =  ( y  e.  ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) ) )
68 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( M  +o  x )  =  ( M  +o  y
) )
6968cbvmptv 4750 . . . . . . . . . . . . 13  |-  ( x  e.  dom  f  |->  ( M  +o  x ) )  =  ( y  e.  dom  f  |->  ( M  +o  y ) )
7062oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( k  =  u  /\  f  =  v )  ->  ( M  +o  y
)  =  ( ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) )  +o  y ) )
7164, 70mpteq12dv 4733 . . . . . . . . . . . . 13  |-  ( ( k  =  u  /\  f  =  v )  ->  ( y  e.  dom  f  |->  ( M  +o  y ) )  =  ( y  e.  dom  v  |->  ( ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  +o  y
) ) )
7269, 71syl5eq 2668 . . . . . . . . . . . 12  |-  ( ( k  =  u  /\  f  =  v )  ->  ( x  e.  dom  f  |->  ( M  +o  x ) )  =  ( y  e.  dom  v  |->  ( ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  +o  y
) ) )
7372cnveqd 5298 . . . . . . . . . . 11  |-  ( ( k  =  u  /\  f  =  v )  ->  `' ( x  e. 
dom  f  |->  ( M  +o  x ) )  =  `' ( y  e.  dom  v  |->  ( ( ( om  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  +o  y ) ) )
7467, 73uneq12d 3768 . . . . . . . . . 10  |-  ( ( k  =  u  /\  f  =  v )  ->  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )  =  ( ( y  e.  ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  |->  ( dom  v  +o  y ) )  u.  `' ( y  e.  dom  v  |->  ( ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  y
) ) ) )
7553, 74syl5eq 2668 . . . . . . . . 9  |-  ( ( k  =  u  /\  f  =  v )  ->  K  =  ( ( y  e.  ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  |->  ( dom  v  +o  y ) )  u.  `' ( y  e.  dom  v  |->  ( ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  y
) ) ) )
7649, 50, 51, 52, 75cbvmpt2 6734 . . . . . . . 8  |-  ( k  e.  _V ,  f  e.  _V  |->  K )  =  ( u  e. 
_V ,  v  e. 
_V  |->  ( ( y  e.  ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  |->  ( dom  v  +o  y ) )  u.  `' ( y  e.  dom  v  |->  ( ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  y
) ) ) )
7776a1i 11 . . . . . . 7  |-  ( ph  ->  ( k  e.  _V ,  f  e.  _V  |->  K )  =  ( u  e.  _V , 
v  e.  _V  |->  ( ( y  e.  ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) )  u.  `' ( y  e. 
dom  v  |->  ( ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) )  +o  y ) ) ) ) )
78 simprl 794 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  u  =  I )
7978fveq2d 6195 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( G `  u )  =  ( G `  I ) )
8079oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( om  ^o  ( G `  u ) )  =  ( om 
^o  ( G `  I ) ) )
8179fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( F `  ( G `  u ) )  =  ( F `
 ( G `  I ) ) )
8280, 81oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  =  ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )
83 simpr 477 . . . . . . . . . . . 12  |-  ( ( u  =  I  /\  v  =  ( T `  I ) )  -> 
v  =  ( T `
 I ) )
8483dmeqd 5326 . . . . . . . . . . 11  |-  ( ( u  =  I  /\  v  =  ( T `  I ) )  ->  dom  v  =  dom  ( T `  I ) )
85 cnfcom.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( T `  I
) : ( H `
 I ) -1-1-onto-> O )
86 f1odm 6141 . . . . . . . . . . . 12  |-  ( ( T `  I ) : ( H `  I ) -1-1-onto-> O  ->  dom  ( T `
 I )  =  ( H `  I
) )
8785, 86syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( T `  I )  =  ( H `  I ) )
8884, 87sylan9eqr 2678 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  dom  v  =  ( H `  I ) )
8988oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( dom  v  +o  y )  =  ( ( H `  I
)  +o  y ) )
9082, 89mpteq12dv 4733 . . . . . . . 8  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( y  e.  ( ( om  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) ) 
|->  ( dom  v  +o  y ) )  =  ( y  e.  ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) ) )
9182oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( ( ( om  ^o  ( G `
 u ) )  .o  ( F `  ( G `  u ) ) )  +o  y
)  =  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) )
9288, 91mpteq12dv 4733 . . . . . . . . 9  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( y  e. 
dom  v  |->  ( ( ( om  ^o  ( G `  u )
)  .o  ( F `
 ( G `  u ) ) )  +o  y ) )  =  ( y  e.  ( H `  I
)  |->  ( ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  +o  y
) ) )
9392cnveqd 5298 . . . . . . . 8  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  `' ( y  e.  dom  v  |->  ( ( ( om  ^o  ( G `  u ) )  .o  ( F `
 ( G `  u ) ) )  +o  y ) )  =  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) )
9490, 93uneq12d 3768 . . . . . . 7  |-  ( (
ph  /\  ( u  =  I  /\  v  =  ( T `  I ) ) )  ->  ( ( y  e.  ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  |->  ( dom  v  +o  y ) )  u.  `' ( y  e.  dom  v  |->  ( ( ( om 
^o  ( G `  u ) )  .o  ( F `  ( G `  u )
) )  +o  y
) ) )  =  ( ( y  e.  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) ) )
95 elex 3212 . . . . . . . 8  |-  ( I  e.  dom  G  ->  I  e.  _V )
9620, 95syl 17 . . . . . . 7  |-  ( ph  ->  I  e.  _V )
97 fvexd 6203 . . . . . . 7  |-  ( ph  ->  ( T `  I
)  e.  _V )
98 ovex 6678 . . . . . . . . . 10  |-  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  e.  _V
9998mptex 6486 . . . . . . . . 9  |-  ( y  e.  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  |->  ( ( H `  I )  +o  y ) )  e.  _V
100 fvex 6201 . . . . . . . . . . 11  |-  ( H `
 I )  e. 
_V
101100mptex 6486 . . . . . . . . . 10  |-  ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) )  e.  _V
102101cnvex 7113 . . . . . . . . 9  |-  `' ( y  e.  ( H `
 I )  |->  ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  y ) )  e.  _V
10399, 102unex 6956 . . . . . . . 8  |-  ( ( y  e.  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) )  e.  _V
104103a1i 11 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) )  e. 
_V )
10577, 94, 96, 97, 104ovmpt2d 6788 . . . . . 6  |-  ( ph  ->  ( I ( k  e.  _V ,  f  e.  _V  |->  K ) ( T `  I
) )  =  ( ( y  e.  ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) ) )
10648, 105eqtrd 2656 . . . . 5  |-  ( ph  ->  ( T `  suc  I )  =  ( ( y  e.  ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) 
|->  ( ( H `  I )  +o  y
) )  u.  `' ( y  e.  ( H `  I ) 
|->  ( ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  +o  y
) ) ) )
107 f1oeq1 6127 . . . . 5  |-  ( ( T `  suc  I
)  =  ( ( y  e.  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) )  ->  ( ( T `  suc  I ) : ( ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  +o  ( H `  I )
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  <->  ( ( y  e.  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) ) : ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) ) ) )
108106, 107syl 17 . . . 4  |-  ( ph  ->  ( ( T `  suc  I ) : ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) )  <->  ( (
y  e.  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) )  |->  ( ( H `  I )  +o  y ) )  u.  `' ( y  e.  ( H `  I )  |->  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  y ) ) ) : ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) ) ) )
10945, 108mpbird 247 . . 3  |-  ( ph  ->  ( T `  suc  I ) : ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) ) )
1101a1i 11 . . . . . 6  |-  ( ( A  e.  On  /\  F  e.  S )  ->  om  e.  On )
111 simpl 473 . . . . . 6  |-  ( ( A  e.  On  /\  F  e.  S )  ->  A  e.  On )
112 simpr 477 . . . . . 6  |-  ( ( A  e.  On  /\  F  e.  S )  ->  F  e.  S )
11356oveq1i 6660 . . . . . . . . . 10  |-  ( M  +o  z )  =  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
)
114113a1i 11 . . . . . . . . 9  |-  ( ( k  e.  _V  /\  z  e.  _V )  ->  ( M  +o  z
)  =  ( ( ( om  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
115114mpt2eq3ia 6720 . . . . . . . 8  |-  ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z ) )  =  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )
116 eqid 2622 . . . . . . . 8  |-  (/)  =  (/)
117 seqomeq12 7549 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
118115, 116, 117mp2an 708 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( M  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) )
11939, 118eqtri 2644 . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
1205, 110, 111, 21, 112, 119cantnfsuc 8567 . . . . 5  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  I  e.  om )  ->  ( H `  suc  I )  =  ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) )
1212, 13, 38, 120syl21anc 1325 . . . 4  |-  ( ph  ->  ( H `  suc  I )  =  ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) )
122 f1oeq2 6128 . . . 4  |-  ( ( H `  suc  I
)  =  ( ( ( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) )  -> 
( ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  <->  ( T `  suc  I ) : ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) ) ) )
123121, 122syl 17 . . 3  |-  ( ph  ->  ( ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  <->  ( T `  suc  I ) : ( ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  +o  ( H `  I ) ) -1-1-onto-> ( ( H `  I )  +o  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) ) ) )
124109, 123mpbird 247 . 2  |-  ( ph  ->  ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) ) )
125 sssucid 5802 . . . . . 6  |-  dom  G  C_ 
suc  dom  G
126125, 20sseldi 3601 . . . . 5  |-  ( ph  ->  I  e.  suc  dom  G )
127 epelg 5030 . . . . . . . . . . 11  |-  ( I  e.  dom  G  -> 
( y  _E  I  <->  y  e.  I ) )
12820, 127syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( y  _E  I  <->  y  e.  I ) )
129128biimpar 502 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  y  _E  I )
130 ovexd 6680 . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  (/) )  e. 
_V )
13135simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  _E  We  ( F supp  (/) ) )
13221oiiso 8442 . . . . . . . . . . . 12  |-  ( ( ( F supp  (/) )  e. 
_V  /\  _E  We  ( F supp  (/) ) )  ->  G  Isom  _E  ,  _E  ( dom  G , 
( F supp  (/) ) ) )
133130, 131, 132syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  G  Isom  _E  ,  _E  ( dom  G ,  ( F supp  (/) ) ) )
134133adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  G  Isom  _E  ,  _E  ( dom  G ,  ( F supp  (/) ) ) )
13521oicl 8434 . . . . . . . . . . . 12  |-  Ord  dom  G
136 ordelss 5739 . . . . . . . . . . . 12  |-  ( ( Ord  dom  G  /\  I  e.  dom  G )  ->  I  C_  dom  G )
137135, 20, 136sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  I  C_  dom  G )
138137sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  dom  G )
13920adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  dom  G )
140 isorel 6576 . . . . . . . . . 10  |-  ( ( G  Isom  _E  ,  _E  ( dom  G ,  ( F supp  (/) ) )  /\  ( y  e.  dom  G  /\  I  e.  dom  G ) )  ->  (
y  _E  I  <->  ( G `  y )  _E  ( G `  I )
) )
141134, 138, 139, 140syl12anc 1324 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  (
y  _E  I  <->  ( G `  y )  _E  ( G `  I )
) )
142129, 141mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  y  e.  I )  ->  ( G `  y )  _E  ( G `  I
) )
143 fvex 6201 . . . . . . . . 9  |-  ( G `
 I )  e. 
_V
144143epelc 5031 . . . . . . . 8  |-  ( ( G `  y )  _E  ( G `  I )  <->  ( G `  y )  e.  ( G `  I ) )
145142, 144sylib 208 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( G `  y )  e.  ( G `  I
) )
146145ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. y  e.  I 
( G `  y
)  e.  ( G `
 I ) )
147 ffun 6048 . . . . . . . 8  |-  ( G : dom  G --> ( F supp  (/) )  ->  Fun  G
)
14822, 147ax-mp 5 . . . . . . 7  |-  Fun  G
149 funimass4 6247 . . . . . . 7  |-  ( ( Fun  G  /\  I  C_ 
dom  G )  -> 
( ( G "
I )  C_  ( G `  I )  <->  A. y  e.  I  ( G `  y )  e.  ( G `  I ) ) )
150148, 137, 149sylancr 695 . . . . . 6  |-  ( ph  ->  ( ( G "
I )  C_  ( G `  I )  <->  A. y  e.  I  ( G `  y )  e.  ( G `  I ) ) )
151146, 150mpbird 247 . . . . 5  |-  ( ph  ->  ( G " I
)  C_  ( G `  I ) )
1521a1i 11 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  om  e.  On )
153 simpll 790 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  A  e.  On )
154 simplr 792 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  F  e.  S )
155 peano1 7085 . . . . . . 7  |-  (/)  e.  om
156155a1i 11 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  (/)  e.  om )
157 simpr1 1067 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  I  e.  suc  dom  G )
158 simpr2 1068 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  ( G `  I )  e.  On )
159 simpr3 1069 . . . . . 6  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  ( G " I )  C_  ( G `  I ) )
1605, 152, 153, 21, 154, 119, 156, 157, 158, 159cantnflt 8569 . . . . 5  |-  ( ( ( A  e.  On  /\  F  e.  S )  /\  ( I  e. 
suc  dom  G  /\  ( G `  I )  e.  On  /\  ( G
" I )  C_  ( G `  I ) ) )  ->  ( H `  I )  e.  ( om  ^o  ( G `  I )
) )
1612, 13, 126, 27, 151, 160syl23anc 1333 . . . 4  |-  ( ph  ->  ( H `  I
)  e.  ( om 
^o  ( G `  I ) ) )
162 ffn 6045 . . . . . . . . . 10  |-  ( F : A --> om  ->  F  Fn  A )
16316, 162syl 17 . . . . . . . . 9  |-  ( ph  ->  F  Fn  A )
164 0ex 4790 . . . . . . . . . 10  |-  (/)  e.  _V
165164a1i 11 . . . . . . . . 9  |-  ( ph  -> 
(/)  e.  _V )
166 elsuppfn 7303 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  A  e.  On  /\  (/)  e.  _V )  ->  ( ( G `
 I )  e.  ( F supp  (/) )  <->  ( ( G `  I )  e.  A  /\  ( F `  ( G `  I ) )  =/=  (/) ) ) )
167163, 2, 165, 166syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( G `  I )  e.  ( F supp  (/) )  <->  ( ( G `  I )  e.  A  /\  ( F `  ( G `  I ) )  =/=  (/) ) ) )
168 simpr 477 . . . . . . . 8  |-  ( ( ( G `  I
)  e.  A  /\  ( F `  ( G `
 I ) )  =/=  (/) )  ->  ( F `  ( G `  I ) )  =/=  (/) )
169167, 168syl6bi 243 . . . . . . 7  |-  ( ph  ->  ( ( G `  I )  e.  ( F supp  (/) )  ->  ( F `  ( G `  I ) )  =/=  (/) ) )
17024, 169mpd 15 . . . . . 6  |-  ( ph  ->  ( F `  ( G `  I )
)  =/=  (/) )
171 on0eln0 5780 . . . . . . 7  |-  ( ( F `  ( G `
 I ) )  e.  On  ->  ( (/) 
e.  ( F `  ( G `  I ) )  <->  ( F `  ( G `  I ) )  =/=  (/) ) )
17232, 171syl 17 . . . . . 6  |-  ( ph  ->  ( (/)  e.  ( F `  ( G `  I ) )  <->  ( F `  ( G `  I
) )  =/=  (/) ) )
173170, 172mpbird 247 . . . . 5  |-  ( ph  -> 
(/)  e.  ( F `  ( G `  I
) ) )
174 omword1 7653 . . . . 5  |-  ( ( ( ( om  ^o  ( G `  I ) )  e.  On  /\  ( F `  ( G `
 I ) )  e.  On )  /\  (/) 
e.  ( F `  ( G `  I ) ) )  ->  ( om  ^o  ( G `  I ) )  C_  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) )
17529, 32, 173, 174syl21anc 1325 . . . 4  |-  ( ph  ->  ( om  ^o  ( G `  I )
)  C_  ( ( om  ^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) )
176 oaabs2 7725 . . . 4  |-  ( ( ( ( H `  I )  e.  ( om  ^o  ( G `
 I ) )  /\  ( ( om 
^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) )  e.  On )  /\  ( om  ^o  ( G `  I ) )  C_  ( ( om  ^o  ( G `  I ) )  .o  ( F `  ( G `  I )
) ) )  -> 
( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  =  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) ) )
177161, 34, 175, 176syl21anc 1325 . . 3  |-  ( ph  ->  ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  =  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) ) )
178 f1oeq3 6129 . . 3  |-  ( ( ( H `  I
)  +o  ( ( om  ^o  ( G `
 I ) )  .o  ( F `  ( G `  I ) ) ) )  =  ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) )  ->  ( ( T `
 suc  I ) : ( H `  suc  I ) -1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  <->  ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) ) )
179177, 178syl 17 . 2  |-  ( ph  ->  ( ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( H `  I )  +o  (
( om  ^o  ( G `  I )
)  .o  ( F `
 ( G `  I ) ) ) )  <->  ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) ) )
180124, 179mpbid 222 1  |-  ( ph  ->  ( T `  suc  I ) : ( H `  suc  I
)
-1-1-onto-> ( ( om  ^o  ( G `  I ) )  .o  ( F `
 ( G `  I ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _E cep 5028    We wwe 5072   `'ccnv 5113   dom cdm 5114   "cima 5117   Ord word 5722   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom  8597
  Copyright terms: Public domain W3C validator