Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinvbr Structured version   Visualization version   Unicode version

Theorem fcoinvbr 29419
Description: Binary relation for the equivalence relation from fcoinver 29418. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Hypothesis
Ref Expression
fcoinvbr.e  |-  .~  =  ( `' F  o.  F
)
Assertion
Ref Expression
fcoinvbr  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .~  Y  <->  ( F `  X )  =  ( F `  Y ) ) )

Proof of Theorem fcoinvbr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fcoinvbr.e . . . . 5  |-  .~  =  ( `' F  o.  F
)
21breqi 4659 . . . 4  |-  ( X  .~  Y  <->  X ( `' F  o.  F
) Y )
3 brcog 5288 . . . 4  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( X ( `' F  o.  F ) Y  <->  E. z ( X F z  /\  z `' F Y ) ) )
42, 3syl5bb 272 . . 3  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( X  .~  Y  <->  E. z ( X F z  /\  z `' F Y ) ) )
543adant1 1079 . 2  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .~  Y  <->  E. z ( X F z  /\  z `' F Y ) ) )
6 fvex 6201 . . . . 5  |-  ( F `
 X )  e. 
_V
76eqvinc 3330 . . . 4  |-  ( ( F `  X )  =  ( F `  Y )  <->  E. z
( z  =  ( F `  X )  /\  z  =  ( F `  Y ) ) )
8 eqcom 2629 . . . . . 6  |-  ( z  =  ( F `  X )  <->  ( F `  X )  =  z )
9 eqcom 2629 . . . . . 6  |-  ( z  =  ( F `  Y )  <->  ( F `  Y )  =  z )
108, 9anbi12i 733 . . . . 5  |-  ( ( z  =  ( F `
 X )  /\  z  =  ( F `  Y ) )  <->  ( ( F `  X )  =  z  /\  ( F `  Y )  =  z ) )
1110exbii 1774 . . . 4  |-  ( E. z ( z  =  ( F `  X
)  /\  z  =  ( F `  Y ) )  <->  E. z ( ( F `  X )  =  z  /\  ( F `  Y )  =  z ) )
127, 11bitri 264 . . 3  |-  ( ( F `  X )  =  ( F `  Y )  <->  E. z
( ( F `  X )  =  z  /\  ( F `  Y )  =  z ) )
13 fnbrfvb 6236 . . . . . . 7  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F `  X )  =  z  <-> 
X F z ) )
14133adant3 1081 . . . . . 6  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( F `  X )  =  z  <-> 
X F z ) )
15 fnbrfvb 6236 . . . . . . 7  |-  ( ( F  Fn  A  /\  Y  e.  A )  ->  ( ( F `  Y )  =  z  <-> 
Y F z ) )
16153adant2 1080 . . . . . 6  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( F `  Y )  =  z  <-> 
Y F z ) )
1714, 16anbi12d 747 . . . . 5  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( ( F `
 X )  =  z  /\  ( F `
 Y )  =  z )  <->  ( X F z  /\  Y F z ) ) )
18 vex 3203 . . . . . . . 8  |-  z  e. 
_V
19 brcnvg 5303 . . . . . . . 8  |-  ( ( z  e.  _V  /\  Y  e.  A )  ->  ( z `' F Y 
<->  Y F z ) )
2018, 19mpan 706 . . . . . . 7  |-  ( Y  e.  A  ->  (
z `' F Y  <-> 
Y F z ) )
21203ad2ant3 1084 . . . . . 6  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( z `' F Y 
<->  Y F z ) )
2221anbi2d 740 . . . . 5  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( X F z  /\  z `' F Y )  <->  ( X F z  /\  Y F z ) ) )
2317, 22bitr4d 271 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( ( F `
 X )  =  z  /\  ( F `
 Y )  =  z )  <->  ( X F z  /\  z `' F Y ) ) )
2423exbidv 1850 . . 3  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( E. z ( ( F `  X
)  =  z  /\  ( F `  Y )  =  z )  <->  E. z
( X F z  /\  z `' F Y ) ) )
2512, 24syl5bb 272 . 2  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( F `  X )  =  ( F `  Y )  <->  E. z ( X F z  /\  z `' F Y ) ) )
265, 25bitr4d 271 1  |-  ( ( F  Fn  A  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  .~  Y  <->  ( F `  X )  =  ( F `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113    o. ccom 5118    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  qtophaus  29903
  Copyright terms: Public domain W3C validator