MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereq1 Structured version   Visualization version   Unicode version

Theorem ereq1 7749
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )

Proof of Theorem ereq1
StepHypRef Expression
1 releq 5201 . . 3  |-  ( R  =  S  ->  ( Rel  R  <->  Rel  S ) )
2 dmeq 5324 . . . 4  |-  ( R  =  S  ->  dom  R  =  dom  S )
32eqeq1d 2624 . . 3  |-  ( R  =  S  ->  ( dom  R  =  A  <->  dom  S  =  A ) )
4 cnveq 5296 . . . . . 6  |-  ( R  =  S  ->  `' R  =  `' S
)
5 coeq1 5279 . . . . . . 7  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  R ) )
6 coeq2 5280 . . . . . . 7  |-  ( R  =  S  ->  ( S  o.  R )  =  ( S  o.  S ) )
75, 6eqtrd 2656 . . . . . 6  |-  ( R  =  S  ->  ( R  o.  R )  =  ( S  o.  S ) )
84, 7uneq12d 3768 . . . . 5  |-  ( R  =  S  ->  ( `' R  u.  ( R  o.  R )
)  =  ( `' S  u.  ( S  o.  S ) ) )
98sseq1d 3632 . . . 4  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  R )
)
10 sseq2 3627 . . . 4  |-  ( R  =  S  ->  (
( `' S  u.  ( S  o.  S
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
119, 10bitrd 268 . . 3  |-  ( R  =  S  ->  (
( `' R  u.  ( R  o.  R
) )  C_  R  <->  ( `' S  u.  ( S  o.  S )
)  C_  S )
)
121, 3, 113anbi123d 1399 . 2  |-  ( R  =  S  ->  (
( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S )
)  C_  S )
) )
13 df-er 7742 . 2  |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
C_  R ) )
14 df-er 7742 . 2  |-  ( S  Er  A  <->  ( Rel  S  /\  dom  S  =  A  /\  ( `' S  u.  ( S  o.  S ) ) 
C_  S ) )
1512, 13, 143bitr4g 303 1  |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    u. cun 3572    C_ wss 3574   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by:  riiner  7820  efglem  18129  efger  18131  efgrelexlemb  18163  efgcpbllemb  18168  frgpuplem  18185  qtophaus  29903  pstmxmet  29940
  Copyright terms: Public domain W3C validator