MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Structured version   Visualization version   Unicode version

Theorem riiner 7820
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner  |-  ( A. x  e.  A  R  Er  B  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    R( x)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 7818 . . 3  |-  ( B  X.  B )  Er  B
2 riin0 4594 . . . . 5  |-  ( A  =  (/)  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B ) )
32adantl 482 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B ) )
4 ereq1 7749 . . . 4  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  =  ( B  X.  B
)  ->  ( (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B  <->  ( B  X.  B )  Er  B
) )
53, 4syl 17 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R
)  Er  B  <->  ( B  X.  B )  Er  B
) )
61, 5mpbiri 248 . 2  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =  (/) )  -> 
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B )
7 iiner 7819 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
87ancoms 469 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  |^|_ x  e.  A  R  Er  B )
9 erssxp 7765 . . . . . 6  |-  ( R  Er  B  ->  R  C_  ( B  X.  B
) )
109ralimi 2952 . . . . 5  |-  ( A. x  e.  A  R  Er  B  ->  A. x  e.  A  R  C_  ( B  X.  B ) )
11 riinn0 4595 . . . . 5  |-  ( ( A. x  e.  A  R  C_  ( B  X.  B )  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R )
1210, 11sylan 488 . . . 4  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R )
13 ereq1 7749 . . . 4  |-  ( ( ( B  X.  B
)  i^i  |^|_ x  e.  A  R )  = 
|^|_ x  e.  A  R  ->  ( ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_
x  e.  A  R  Er  B ) )
1412, 13syl 17 . . 3  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B  <->  |^|_ x  e.  A  R  Er  B
) )
158, 14mpbird 247 . 2  |-  ( ( A. x  e.  A  R  Er  B  /\  A  =/=  (/) )  ->  (
( B  X.  B
)  i^i  |^|_ x  e.  A  R )  Er  B )
166, 15pm2.61dane 2881 1  |-  ( A. x  e.  A  R  Er  B  ->  ( ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   |^|_ciin 4521    X. cxp 5112    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iin 4523  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-er 7742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator