MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabsn Structured version   Visualization version   Unicode version

Theorem euabsn 4261
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )

Proof of Theorem euabsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4260 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 nfv 1843 . . 3  |-  F/ y { x  |  ph }  =  { x }
3 nfab1 2766 . . . 4  |-  F/_ x { x  |  ph }
43nfeq1 2778 . . 3  |-  F/ x { x  |  ph }  =  { y }
5 sneq 4187 . . . 4  |-  ( x  =  y  ->  { x }  =  { y } )
65eqeq2d 2632 . . 3  |-  ( x  =  y  ->  ( { x  |  ph }  =  { x }  <->  { x  |  ph }  =  {
y } ) )
72, 4, 6cbvex 2272 . 2  |-  ( E. x { x  | 
ph }  =  {
x }  <->  E. y { x  |  ph }  =  { y } )
81, 7bitr4i 267 1  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   E.wex 1704   E!weu 2470   {cab 2608   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sn 4178
This theorem is referenced by:  eusn  4265  uniintsn  4514  args  5493  opabiotadm  6260  mapsn  7899  mapsnd  39388
  Copyright terms: Public domain W3C validator