MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotadm Structured version   Visualization version   Unicode version

Theorem opabiotadm 6260
Description: Define a function whose value is "the unique  y such that  ph ( x ,  y )". (Contributed by NM, 16-Nov-2013.)
Hypothesis
Ref Expression
opabiota.1  |-  F  =  { <. x ,  y
>.  |  { y  |  ph }  =  {
y } }
Assertion
Ref Expression
opabiotadm  |-  dom  F  =  { x  |  E! y ph }
Distinct variable group:    x, y, F
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabiotadm
StepHypRef Expression
1 dmopab 5335 . 2  |-  dom  { <. x ,  y >.  |  { y  |  ph }  =  { y } }  =  {
x  |  E. y { y  |  ph }  =  { y } }
2 opabiota.1 . . 3  |-  F  =  { <. x ,  y
>.  |  { y  |  ph }  =  {
y } }
32dmeqi 5325 . 2  |-  dom  F  =  dom  { <. x ,  y >.  |  {
y  |  ph }  =  { y } }
4 euabsn 4261 . . 3  |-  ( E! y ph  <->  E. y { y  |  ph }  =  { y } )
54abbii 2739 . 2  |-  { x  |  E! y ph }  =  { x  |  E. y { y  |  ph }  =  { y } }
61, 3, 53eqtr4i 2654 1  |-  dom  F  =  { x  |  E! y ph }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   E.wex 1704   E!weu 2470   {cab 2608   {csn 4177   {copab 4712   dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-dm 5124
This theorem is referenced by:  opabiota  6261
  Copyright terms: Public domain W3C validator