MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pliguhgr Structured version   Visualization version   Unicode version

Theorem pliguhgr 27338
Description: Any planar incidence geometry can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 25974 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.)
Assertion
Ref Expression
pliguhgr  |-  ( G  e.  Plig  ->  <. U. G ,  (  _I  |`  G )
>.  e. UHGraph  )

Proof of Theorem pliguhgr
StepHypRef Expression
1 f1oi 6174 . . . 4  |-  (  _I  |`  G ) : G -1-1-onto-> G
2 f1of 6137 . . . 4  |-  ( (  _I  |`  G ) : G -1-1-onto-> G  ->  (  _I  |`  G ) : G --> G )
3 pwuni 4474 . . . . . . 7  |-  G  C_  ~P U. G
4 n0lplig 27335 . . . . . . . . . 10  |-  ( G  e.  Plig  ->  -.  (/)  e.  G
)
54adantr 481 . . . . . . . . 9  |-  ( ( G  e.  Plig  /\  G  C_ 
~P U. G )  ->  -.  (/)  e.  G )
6 disjsn 4246 . . . . . . . . 9  |-  ( ( G  i^i  { (/) } )  =  (/)  <->  -.  (/)  e.  G
)
75, 6sylibr 224 . . . . . . . 8  |-  ( ( G  e.  Plig  /\  G  C_ 
~P U. G )  -> 
( G  i^i  { (/)
} )  =  (/) )
8 reldisj 4020 . . . . . . . . 9  |-  ( G 
C_  ~P U. G  -> 
( ( G  i^i  {
(/) } )  =  (/)  <->  G  C_  ( ~P U. G  \  { (/) } ) ) )
98adantl 482 . . . . . . . 8  |-  ( ( G  e.  Plig  /\  G  C_ 
~P U. G )  -> 
( ( G  i^i  {
(/) } )  =  (/)  <->  G  C_  ( ~P U. G  \  { (/) } ) ) )
107, 9mpbid 222 . . . . . . 7  |-  ( ( G  e.  Plig  /\  G  C_ 
~P U. G )  ->  G  C_  ( ~P U. G  \  { (/) } ) )
113, 10mpan2 707 . . . . . 6  |-  ( G  e.  Plig  ->  G  C_  ( ~P U. G  \  { (/) } ) )
12 fss 6056 . . . . . 6  |-  ( ( (  _I  |`  G ) : G --> G  /\  G  C_  ( ~P U. G  \  { (/) } ) )  ->  (  _I  |`  G ) : G --> ( ~P U. G  \  { (/) } ) )
1311, 12sylan2 491 . . . . 5  |-  ( ( (  _I  |`  G ) : G --> G  /\  G  e.  Plig )  -> 
(  _I  |`  G ) : G --> ( ~P
U. G  \  { (/)
} ) )
1413ex 450 . . . 4  |-  ( (  _I  |`  G ) : G --> G  ->  ( G  e.  Plig  ->  (  _I  |`  G ) : G --> ( ~P U. G  \  { (/) } ) ) )
151, 2, 14mp2b 10 . . 3  |-  ( G  e.  Plig  ->  (  _I  |`  G ) : G --> ( ~P U. G  \  { (/) } ) )
1615ffdmd 6063 . 2  |-  ( G  e.  Plig  ->  (  _I  |`  G ) : dom  (  _I  |`  G ) --> ( ~P U. G  \  { (/) } ) )
17 uniexg 6955 . . 3  |-  ( G  e.  Plig  ->  U. G  e.  _V )
18 resiexg 7102 . . 3  |-  ( G  e.  Plig  ->  (  _I  |`  G )  e.  _V )
19 isuhgrop 25965 . . 3  |-  ( ( U. G  e.  _V  /\  (  _I  |`  G )  e.  _V )  -> 
( <. U. G ,  (  _I  |`  G ) >.  e. UHGraph 
<->  (  _I  |`  G ) : dom  (  _I  |`  G ) --> ( ~P
U. G  \  { (/)
} ) ) )
2017, 18, 19syl2anc 693 . 2  |-  ( G  e.  Plig  ->  ( <. U. G ,  (  _I  |`  G ) >.  e. UHGraph  <->  (  _I  |`  G ) : dom  (  _I  |`  G ) --> ( ~P U. G  \  { (/) } ) ) )
2116, 20mpbird 247 1  |-  ( G  e.  Plig  ->  <. U. G ,  (  _I  |`  G )
>.  e. UHGraph  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436    _I cid 5023   dom cdm 5114    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   UHGraph cuhgr 25951   Pligcplig 27326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-uhgr 25953  df-plig 27327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator