| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lem3lem6 | Structured version Visualization version Unicode version | ||
| Description: Formerly part of proof of
eupth2lem3 27096: If an edge (not a loop) is
added to a trail, the degree of vertices not being end vertices of this
edge remains odd if it was odd before (regarding the subgraphs induced
by the involved trails). Remark: This seems to be not valid for
hyperedges joining more vertices than |
| Ref | Expression |
|---|---|
| trlsegvdeg.v |
|
| trlsegvdeg.i |
|
| trlsegvdeg.f |
|
| trlsegvdeg.n |
|
| trlsegvdeg.u |
|
| trlsegvdeg.w |
|
| trlsegvdeg.vx |
|
| trlsegvdeg.vy |
|
| trlsegvdeg.vz |
|
| trlsegvdeg.ix |
|
| trlsegvdeg.iy |
|
| trlsegvdeg.iz |
|
| eupth2lem3.o |
|
| eupth2lem3.e |
|
| Ref | Expression |
|---|---|
| eupth2lem3lem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.iy |
. . . . . . . 8
| |
| 2 | 1 | 3ad2ant1 1082 |
. . . . . . 7
|
| 3 | trlsegvdeg.vy |
. . . . . . . 8
| |
| 4 | 3 | 3ad2ant1 1082 |
. . . . . . 7
|
| 5 | fvexd 6203 |
. . . . . . 7
| |
| 6 | trlsegvdeg.u |
. . . . . . . 8
| |
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . 7
|
| 8 | fvexd 6203 |
. . . . . . 7
| |
| 9 | eupth2lem3.e |
. . . . . . . . 9
| |
| 10 | simpl 473 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | adantl 482 |
. . . . . . . . . . . . 13
|
| 12 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | adantl 482 |
. . . . . . . . . . . . 13
|
| 14 | 11, 13 | nelprd 4203 |
. . . . . . . . . . . 12
|
| 15 | df-nel 2898 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | sylibr 224 |
. . . . . . . . . . 11
|
| 17 | neleq2 2903 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl5ibr 236 |
. . . . . . . . . 10
|
| 19 | 18 | expd 452 |
. . . . . . . . 9
|
| 20 | 9, 19 | syl 17 |
. . . . . . . 8
|
| 21 | 20 | 3imp 1256 |
. . . . . . 7
|
| 22 | 2, 4, 5, 7, 8, 21 | 1hevtxdg0 26401 |
. . . . . 6
|
| 23 | 22 | oveq2d 6666 |
. . . . 5
|
| 24 | trlsegvdeg.v |
. . . . . . . . 9
| |
| 25 | trlsegvdeg.i |
. . . . . . . . 9
| |
| 26 | trlsegvdeg.f |
. . . . . . . . 9
| |
| 27 | trlsegvdeg.n |
. . . . . . . . 9
| |
| 28 | trlsegvdeg.w |
. . . . . . . . 9
| |
| 29 | trlsegvdeg.vx |
. . . . . . . . 9
| |
| 30 | trlsegvdeg.vz |
. . . . . . . . 9
| |
| 31 | trlsegvdeg.ix |
. . . . . . . . 9
| |
| 32 | trlsegvdeg.iz |
. . . . . . . . 9
| |
| 33 | 24, 25, 26, 27, 6, 28, 29, 3, 30, 31, 1, 32 | eupth2lem3lem1 27088 |
. . . . . . . 8
|
| 34 | 33 | nn0cnd 11353 |
. . . . . . 7
|
| 35 | 34 | addid1d 10236 |
. . . . . 6
|
| 36 | 35 | 3ad2ant1 1082 |
. . . . 5
|
| 37 | 23, 36 | eqtrd 2656 |
. . . 4
|
| 38 | 37 | breq2d 4665 |
. . 3
|
| 39 | 38 | notbid 308 |
. 2
|
| 40 | fveq2 6191 |
. . . . . . . 8
| |
| 41 | 40 | breq2d 4665 |
. . . . . . 7
|
| 42 | 41 | notbid 308 |
. . . . . 6
|
| 43 | 42 | elrab3 3364 |
. . . . 5
|
| 44 | 6, 43 | syl 17 |
. . . 4
|
| 45 | eupth2lem3.o |
. . . . 5
| |
| 46 | 45 | eleq2d 2687 |
. . . 4
|
| 47 | 44, 46 | bitr3d 270 |
. . 3
|
| 48 | 47 | 3ad2ant1 1082 |
. 2
|
| 49 | 10 | 3ad2ant3 1084 |
. . . . . . 7
|
| 50 | 12 | 3ad2ant3 1084 |
. . . . . . 7
|
| 51 | 49, 50 | 2thd 255 |
. . . . . 6
|
| 52 | neeq1 2856 |
. . . . . . 7
| |
| 53 | neeq1 2856 |
. . . . . . 7
| |
| 54 | 52, 53 | bibi12d 335 |
. . . . . 6
|
| 55 | 51, 54 | syl5ibcom 235 |
. . . . 5
|
| 56 | 55 | pm5.32rd 672 |
. . . 4
|
| 57 | 49 | neneqd 2799 |
. . . . . . 7
|
| 58 | biorf 420 |
. . . . . . 7
| |
| 59 | 57, 58 | syl 17 |
. . . . . 6
|
| 60 | orcom 402 |
. . . . . 6
| |
| 61 | 59, 60 | syl6bb 276 |
. . . . 5
|
| 62 | 61 | anbi2d 740 |
. . . 4
|
| 63 | 50 | neneqd 2799 |
. . . . . . 7
|
| 64 | biorf 420 |
. . . . . . 7
| |
| 65 | 63, 64 | syl 17 |
. . . . . 6
|
| 66 | orcom 402 |
. . . . . 6
| |
| 67 | 65, 66 | syl6bb 276 |
. . . . 5
|
| 68 | 67 | anbi2d 740 |
. . . 4
|
| 69 | 56, 62, 68 | 3bitr3d 298 |
. . 3
|
| 70 | eupth2lem1 27078 |
. . . 4
| |
| 71 | 7, 70 | syl 17 |
. . 3
|
| 72 | eupth2lem1 27078 |
. . . 4
| |
| 73 | 7, 72 | syl 17 |
. . 3
|
| 74 | 69, 71, 73 | 3bitr4d 300 |
. 2
|
| 75 | 39, 48, 74 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-xadd 11947 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-vtxdg 26362 df-wlks 26495 df-trls 26589 |
| This theorem is referenced by: eupth2lem3lem7 27094 |
| Copyright terms: Public domain | W3C validator |