MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   Unicode version

Theorem eupth2eucrct 27077
Description: Append one path segment to an Eulerian path  <. F ,  P >. which may not be an (Eulerian) circuit to become an Eulerian circuit  <. H ,  Q >. of the supergraph  S obtained by adding the new edge to the graph  G. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupthp1.v  |-  V  =  (Vtx `  G )
eupthp1.i  |-  I  =  (iEdg `  G )
eupthp1.f  |-  ( ph  ->  Fun  I )
eupthp1.a  |-  ( ph  ->  I  e.  Fin )
eupthp1.b  |-  ( ph  ->  B  e.  _V )
eupthp1.c  |-  ( ph  ->  C  e.  V )
eupthp1.d  |-  ( ph  ->  -.  B  e.  dom  I )
eupthp1.p  |-  ( ph  ->  F (EulerPaths `  G
) P )
eupthp1.n  |-  N  =  ( # `  F
)
eupthp1.e  |-  ( ph  ->  E  e.  (Edg `  G ) )
eupthp1.x  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
eupthp1.u  |-  (iEdg `  S )  =  ( I  u.  { <. B ,  E >. } )
eupthp1.h  |-  H  =  ( F  u.  { <. N ,  B >. } )
eupthp1.q  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
eupthp1.s  |-  (Vtx `  S )  =  V
eupthp1.l  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
eupth2eucrct.c  |-  ( ph  ->  C  =  ( P `
 0 ) )
Assertion
Ref Expression
eupth2eucrct  |-  ( ph  ->  ( H (EulerPaths `  S
) Q  /\  H
(Circuits `  S ) Q ) )

Proof of Theorem eupth2eucrct
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3  |-  V  =  (Vtx `  G )
2 eupthp1.i . . 3  |-  I  =  (iEdg `  G )
3 eupthp1.f . . 3  |-  ( ph  ->  Fun  I )
4 eupthp1.a . . 3  |-  ( ph  ->  I  e.  Fin )
5 eupthp1.b . . 3  |-  ( ph  ->  B  e.  _V )
6 eupthp1.c . . 3  |-  ( ph  ->  C  e.  V )
7 eupthp1.d . . 3  |-  ( ph  ->  -.  B  e.  dom  I )
8 eupthp1.p . . 3  |-  ( ph  ->  F (EulerPaths `  G
) P )
9 eupthp1.n . . 3  |-  N  =  ( # `  F
)
10 eupthp1.e . . 3  |-  ( ph  ->  E  e.  (Edg `  G ) )
11 eupthp1.x . . 3  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
12 eupthp1.u . . 3  |-  (iEdg `  S )  =  ( I  u.  { <. B ,  E >. } )
13 eupthp1.h . . 3  |-  H  =  ( F  u.  { <. N ,  B >. } )
14 eupthp1.q . . 3  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
15 eupthp1.s . . 3  |-  (Vtx `  S )  =  V
16 eupthp1.l . . 3  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 27076 . 2  |-  ( ph  ->  H (EulerPaths `  S
) Q )
18 simpr 477 . . 3  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  H (EulerPaths `  S
) Q )
19 eupthistrl 27071 . . . . 5  |-  ( H (EulerPaths `  S ) Q  ->  H (Trails `  S ) Q )
2019adantl 482 . . . 4  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  H (Trails `  S ) Q )
21 fveq2 6191 . . . . . . . 8  |-  ( k  =  0  ->  ( Q `  k )  =  ( Q ` 
0 ) )
22 fveq2 6191 . . . . . . . 8  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
2321, 22eqeq12d 2637 . . . . . . 7  |-  ( k  =  0  ->  (
( Q `  k
)  =  ( P `
 k )  <->  ( Q `  0 )  =  ( P `  0
) ) )
24 eupthiswlk 27072 . . . . . . . . 9  |-  ( F (EulerPaths `  G ) P  ->  F (Walks `  G ) P )
258, 24syl 17 . . . . . . . 8  |-  ( ph  ->  F (Walks `  G
) P )
2612a1i 11 . . . . . . . 8  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
2715a1i 11 . . . . . . . 8  |-  ( ph  ->  (Vtx `  S )  =  V )
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 26574 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( 0 ... N ) ( Q `  k
)  =  ( P `
 k ) )
292wlkf 26510 . . . . . . . . 9  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
3024, 29syl 17 . . . . . . . 8  |-  ( F (EulerPaths `  G ) P  ->  F  e. Word  dom  I )
31 lencl 13324 . . . . . . . . 9  |-  ( F  e. Word  dom  I  ->  (
# `  F )  e.  NN0 )
329eleq1i 2692 . . . . . . . . . 10  |-  ( N  e.  NN0  <->  ( # `  F
)  e.  NN0 )
33 0elfz 12436 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  0  e.  ( 0 ... N
) )
3432, 33sylbir 225 . . . . . . . . 9  |-  ( (
# `  F )  e.  NN0  ->  0  e.  ( 0 ... N
) )
3531, 34syl 17 . . . . . . . 8  |-  ( F  e. Word  dom  I  ->  0  e.  ( 0 ... N ) )
368, 30, 353syl 18 . . . . . . 7  |-  ( ph  ->  0  e.  ( 0 ... N ) )
3723, 28, 36rspcdva 3316 . . . . . 6  |-  ( ph  ->  ( Q `  0
)  =  ( P `
 0 ) )
3837adantr 481 . . . . 5  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( Q ` 
0 )  =  ( P `  0 ) )
39 eupth2eucrct.c . . . . . . 7  |-  ( ph  ->  C  =  ( P `
 0 ) )
4039eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( P `  0
)  =  C )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( P ` 
0 )  =  C )
4214a1i 11 . . . . . . 7  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) )
4313fveq2i 6194 . . . . . . . . 9  |-  ( # `  H )  =  (
# `  ( F  u.  { <. N ,  B >. } ) )
4443a1i 11 . . . . . . . 8  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( # `  H
)  =  ( # `  ( F  u.  { <. N ,  B >. } ) ) )
45 wrdfin 13323 . . . . . . . . . . . 12  |-  ( F  e. Word  dom  I  ->  F  e.  Fin )
4629, 45syl 17 . . . . . . . . . . 11  |-  ( F (Walks `  G ) P  ->  F  e.  Fin )
478, 24, 463syl 18 . . . . . . . . . 10  |-  ( ph  ->  F  e.  Fin )
4847adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  F  e.  Fin )
49 snfi 8038 . . . . . . . . . 10  |-  { <. N ,  B >. }  e.  Fin
5049a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  { <. N ,  B >. }  e.  Fin )
51 wrddm 13312 . . . . . . . . . . . . 13  |-  ( F  e. Word  dom  I  ->  dom 
F  =  ( 0..^ ( # `  F
) ) )
528, 30, 513syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  ( 0..^ ( # `  F
) ) )
53 fzonel 12483 . . . . . . . . . . . . . . . 16  |-  -.  ( # `
 F )  e.  ( 0..^ ( # `  F ) )
5453a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  ( # `  F
)  e.  ( 0..^ ( # `  F
) ) )
559eleq1i 2692 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  ( 0..^ ( # `  F
) ) )
5654, 55sylnibr 319 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  N  e.  ( 0..^ ( # `  F
) ) )
57 eleq2 2690 . . . . . . . . . . . . . . 15  |-  ( dom 
F  =  ( 0..^ ( # `  F
) )  ->  ( N  e.  dom  F  <->  N  e.  ( 0..^ ( # `  F
) ) ) )
5857notbid 308 . . . . . . . . . . . . . 14  |-  ( dom 
F  =  ( 0..^ ( # `  F
) )  ->  ( -.  N  e.  dom  F  <->  -.  N  e.  (
0..^ ( # `  F
) ) ) )
5956, 58syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dom  F  =  ( 0..^ ( # `  F ) )  ->  -.  N  e.  dom  F ) )
60 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( # `  F )  e.  _V
619, 60eqeltri 2697 . . . . . . . . . . . . . . 15  |-  N  e. 
_V
6261a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  _V )
6362, 5opeldmd 5327 . . . . . . . . . . . . 13  |-  ( ph  ->  ( <. N ,  B >.  e.  F  ->  N  e.  dom  F ) )
6459, 63nsyld 154 . . . . . . . . . . . 12  |-  ( ph  ->  ( dom  F  =  ( 0..^ ( # `  F ) )  ->  -.  <. N ,  B >.  e.  F ) )
6552, 64mpd 15 . . . . . . . . . . 11  |-  ( ph  ->  -.  <. N ,  B >.  e.  F )
6665adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  -.  <. N ,  B >.  e.  F )
67 disjsn 4246 . . . . . . . . . 10  |-  ( ( F  i^i  { <. N ,  B >. } )  =  (/)  <->  -.  <. N ,  B >.  e.  F )
6866, 67sylibr 224 . . . . . . . . 9  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( F  i^i  {
<. N ,  B >. } )  =  (/) )
69 hashun 13171 . . . . . . . . 9  |-  ( ( F  e.  Fin  /\  {
<. N ,  B >. }  e.  Fin  /\  ( F  i^i  { <. N ,  B >. } )  =  (/) )  ->  ( # `  ( F  u.  { <. N ,  B >. } ) )  =  ( ( # `  F
)  +  ( # `  { <. N ,  B >. } ) ) )
7048, 50, 68, 69syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( # `  ( F  u.  { <. N ,  B >. } ) )  =  ( ( # `  F )  +  (
# `  { <. N ,  B >. } ) ) )
719eqcomi 2631 . . . . . . . . . 10  |-  ( # `  F )  =  N
72 opex 4932 . . . . . . . . . . 11  |-  <. N ,  B >.  e.  _V
73 hashsng 13159 . . . . . . . . . . 11  |-  ( <. N ,  B >.  e. 
_V  ->  ( # `  { <. N ,  B >. } )  =  1 )
7472, 73ax-mp 5 . . . . . . . . . 10  |-  ( # `  { <. N ,  B >. } )  =  1
7571, 74oveq12i 6662 . . . . . . . . 9  |-  ( (
# `  F )  +  ( # `  { <. N ,  B >. } ) )  =  ( N  +  1 )
7675a1i 11 . . . . . . . 8  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( ( # `  F )  +  (
# `  { <. N ,  B >. } ) )  =  ( N  + 
1 ) )
7744, 70, 763eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( # `  H
)  =  ( N  +  1 ) )
7842, 77fveq12d 6197 . . . . . 6  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( Q `  ( # `  H ) )  =  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) `
 ( N  + 
1 ) ) )
79 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  _V )
801, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 26570 . . . . . . . . 9  |-  ( ph  ->  -.  ( N  + 
1 )  e.  dom  P )
8179, 6, 803jca 1242 . . . . . . . 8  |-  ( ph  ->  ( ( N  + 
1 )  e.  _V  /\  C  e.  V  /\  -.  ( N  +  1 )  e.  dom  P
) )
8281adantr 481 . . . . . . 7  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( ( N  +  1 )  e. 
_V  /\  C  e.  V  /\  -.  ( N  +  1 )  e. 
dom  P ) )
83 fsnunfv 6453 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  _V  /\  C  e.  V  /\  -.  ( N  +  1 )  e.  dom  P
)  ->  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) `
 ( N  + 
1 ) )  =  C )
8482, 83syl 17 . . . . . 6  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( ( P  u.  { <. ( N  +  1 ) ,  C >. } ) `
 ( N  + 
1 ) )  =  C )
8578, 84eqtr2d 2657 . . . . 5  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  C  =  ( Q `  ( # `  H ) ) )
8638, 41, 853eqtrd 2660 . . . 4  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( Q ` 
0 )  =  ( Q `  ( # `  H ) ) )
87 iscrct 26685 . . . 4  |-  ( H (Circuits `  S ) Q 
<->  ( H (Trails `  S ) Q  /\  ( Q `  0 )  =  ( Q `  ( # `  H ) ) ) )
8820, 86, 87sylanbrc 698 . . 3  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  H (Circuits `  S
) Q )
8918, 88jca 554 . 2  |-  ( (
ph  /\  H (EulerPaths `  S ) Q )  ->  ( H (EulerPaths `  S ) Q  /\  H (Circuits `  S ) Q ) )
9017, 89mpdan 702 1  |-  ( ph  ->  ( H (EulerPaths `  S
) Q  /\  H
(Circuits `  S ) Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492  Trailsctrls 26587  Circuitsccrcts 26679  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-trls 26589  df-crcts 26681  df-eupth 27058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator