| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp45 | Structured version Visualization version Unicode version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp45.1 |
|
| Ref | Expression |
|---|---|
| exp45 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp45.1 |
. . 3
| |
| 2 | 1 | exp32 631 |
. 2
|
| 3 | 2 | exp4a 633 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: oaass 7641 zorn2lem4 9321 zorn2lem7 9324 iscatd2 16342 fgss2 21678 alexsubALTlem4 21854 grporcan 27372 spansncvi 28511 mdsymlem5 29266 riotasv3d 34246 cvratlem 34707 hbtlem2 37694 |
| Copyright terms: Public domain | W3C validator |