| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fgss2 | Structured version Visualization version Unicode version | ||
| Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fgss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfg 21676 |
. . . . . 6
| |
| 2 | 1 | adantr 481 |
. . . . 5
|
| 3 | 2 | sseld 3602 |
. . . 4
|
| 4 | ssel2 3598 |
. . . . . 6
| |
| 5 | elfg 21675 |
. . . . . . . 8
| |
| 6 | simpr 477 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl6bi 243 |
. . . . . . 7
|
| 8 | 7 | adantl 482 |
. . . . . 6
|
| 9 | 4, 8 | syl5 34 |
. . . . 5
|
| 10 | 9 | expd 452 |
. . . 4
|
| 11 | 3, 10 | syl5d 73 |
. . 3
|
| 12 | 11 | ralrimdv 2968 |
. 2
|
| 13 | sseq2 3627 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | rexbidv 3052 |
. . . . . . . . . . . 12
|
| 15 | 14 | rspcv 3305 |
. . . . . . . . . . 11
|
| 16 | 15 | adantl 482 |
. . . . . . . . . 10
|
| 17 | sstr 3611 |
. . . . . . . . . . . . . 14
| |
| 18 | sseq1 3626 |
. . . . . . . . . . . . . . . . 17
| |
| 19 | 18 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
|
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . . . 15
|
| 21 | 20 | a1d 25 |
. . . . . . . . . . . . . 14
|
| 22 | 17, 21 | sylanr2 685 |
. . . . . . . . . . . . 13
|
| 23 | 22 | ancld 576 |
. . . . . . . . . . . 12
|
| 24 | 23 | exp45 642 |
. . . . . . . . . . 11
|
| 25 | 24 | rexlimdv 3030 |
. . . . . . . . . 10
|
| 26 | 16, 25 | syld 47 |
. . . . . . . . 9
|
| 27 | 26 | impancom 456 |
. . . . . . . 8
|
| 28 | 27 | rexlimdv 3030 |
. . . . . . 7
|
| 29 | 28 | com23 86 |
. . . . . 6
|
| 30 | 29 | impd 447 |
. . . . 5
|
| 31 | elfg 21675 |
. . . . . . 7
| |
| 32 | 31 | adantr 481 |
. . . . . 6
|
| 33 | 32 | adantr 481 |
. . . . 5
|
| 34 | elfg 21675 |
. . . . . . 7
| |
| 35 | 34 | adantl 482 |
. . . . . 6
|
| 36 | 35 | adantr 481 |
. . . . 5
|
| 37 | 30, 33, 36 | 3imtr4d 283 |
. . . 4
|
| 38 | 37 | ssrdv 3609 |
. . 3
|
| 39 | 38 | ex 450 |
. 2
|
| 40 | 12, 39 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |