MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss2 Structured version   Visualization version   Unicode version

Theorem fgss2 21678
Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  <->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
Distinct variable groups:    x, y, F    x, G, y    x, X, y

Proof of Theorem fgss2
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfg 21676 . . . . . 6  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
21adantr 481 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  F  C_  ( X filGen F ) )
32sseld 3602 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
x  e.  F  ->  x  e.  ( X filGen F ) ) )
4 ssel2 3598 . . . . . 6  |-  ( ( ( X filGen F ) 
C_  ( X filGen G )  /\  x  e.  ( X filGen F ) )  ->  x  e.  ( X filGen G ) )
5 elfg 21675 . . . . . . . 8  |-  ( G  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen G )  <-> 
( x  C_  X  /\  E. y  e.  G  y  C_  x ) ) )
6 simpr 477 . . . . . . . 8  |-  ( ( x  C_  X  /\  E. y  e.  G  y 
C_  x )  ->  E. y  e.  G  y  C_  x )
75, 6syl6bi 243 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen G )  ->  E. y  e.  G  y  C_  x ) )
87adantl 482 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
x  e.  ( X
filGen G )  ->  E. y  e.  G  y  C_  x ) )
94, 8syl5 34 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( ( X filGen F )  C_  ( X filGen G )  /\  x  e.  ( X filGen F ) )  ->  E. y  e.  G  y  C_  x ) )
109expd 452 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  ( x  e.  ( X filGen F )  ->  E. y  e.  G  y  C_  x ) ) )
113, 10syl5d 73 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  ( x  e.  F  ->  E. y  e.  G  y  C_  x ) ) )
1211ralrimdv 2968 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
13 sseq2 3627 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
y  C_  x  <->  y  C_  u ) )
1413rexbidv 3052 . . . . . . . . . . . 12  |-  ( x  =  u  ->  ( E. y  e.  G  y  C_  x  <->  E. y  e.  G  y  C_  u ) )
1514rspcv 3305 . . . . . . . . . . 11  |-  ( u  e.  F  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  E. y  e.  G  y  C_  u ) )
1615adantl 482 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  E. y  e.  G  y  C_  u ) )
17 sstr 3611 . . . . . . . . . . . . . 14  |-  ( ( y  C_  u  /\  u  C_  t )  -> 
y  C_  t )
18 sseq1 3626 . . . . . . . . . . . . . . . . 17  |-  ( v  =  y  ->  (
v  C_  t  <->  y  C_  t ) )
1918rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  G  /\  y  C_  t )  ->  E. v  e.  G  v  C_  t )
2019adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  y  C_  t ) )  ->  E. v  e.  G  v  C_  t )
2120a1d 25 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  y  C_  t ) )  ->  ( t  C_  X  ->  E. v  e.  G  v  C_  t ) )
2217, 21sylanr2 685 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  ( y  C_  u  /\  u  C_  t ) ) )  ->  (
t  C_  X  ->  E. v  e.  G  v 
C_  t ) )
2322ancld 576 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  ( y  C_  u  /\  u  C_  t ) ) )  ->  (
t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) )
2423exp45 642 . . . . . . . . . . 11  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( y  e.  G  ->  ( y 
C_  u  ->  (
u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) ) ) ) )
2524rexlimdv 3030 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( E. y  e.  G  y  C_  u  ->  ( u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) ) )
2616, 25syld 47 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  ( u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) ) )
2726impancom 456 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( u  e.  F  ->  ( u 
C_  t  ->  (
t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) ) ) )
2827rexlimdv 3030 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( E. u  e.  F  u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) )
2928com23 86 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  C_  X  ->  ( E. u  e.  F  u  C_  t  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) )
3029impd 447 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( (
t  C_  X  /\  E. u  e.  F  u 
C_  t )  -> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
31 elfg 21675 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. u  e.  F  u  C_  t ) ) )
3231adantr 481 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
t  e.  ( X
filGen F )  <->  ( t  C_  X  /\  E. u  e.  F  u  C_  t
) ) )
3332adantr 481 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. u  e.  F  u  C_  t ) ) )
34 elfg 21675 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3534adantl 482 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
t  e.  ( X
filGen G )  <->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3635adantr 481 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3730, 33, 363imtr4d 283 . . . 4  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen F )  ->  t  e.  ( X filGen G ) ) )
3837ssrdv 3609 . . 3  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( X filGen F )  C_  ( X filGen G ) )
3938ex 450 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  ( X filGen F )  C_  ( X filGen G ) ) )
4012, 39impbid 202 1  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  <->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator