MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Visualization version   Unicode version

Theorem grporcan 27372
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grporcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )

Proof of Theorem grporcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8  |-  X  =  ran  G
2 eqid 2622 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
31, 2grpoidinv2 27369 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) ) )
4 simpr 477 . . . . . . . . 9  |-  ( ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  ( C G y )  =  (GId `  G )
)
54reximi 3011 . . . . . . . 8  |-  ( E. y  e.  X  ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
65adantl 482 . . . . . . 7  |-  ( ( ( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
73, 6syl 17 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
87ad2ant2rl 785 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G
) )
9 oveq1 6657 . . . . . . . . . . . 12  |-  ( ( A G C )  =  ( B G C )  ->  (
( A G C ) G y )  =  ( ( B G C ) G y ) )
109ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( ( B G C ) G y ) )
111grpoass 27357 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
12113anassrs 1290 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  C  e.  X )  /\  y  e.  X )  ->  (
( A G C ) G y )  =  ( A G ( C G y ) ) )
1312adantlrl 756 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
1413adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
151grpoass 27357 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
16153exp2 1285 . . . . . . . . . . . . . 14  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
y  e.  X  -> 
( ( B G C ) G y )  =  ( B G ( C G y ) ) ) ) ) )
1716imp42 620 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X
) )  /\  y  e.  X )  ->  (
( B G C ) G y )  =  ( B G ( C G y ) ) )
1817adantllr 755 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
1918adantrr 753 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
2010, 14, 193eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
2120adantrrl 760 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
22 oveq2 6658 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
2322ad2antrl 764 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId `  G ) ) )
2423adantl 482 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
25 oveq2 6658 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2625ad2antrl 764 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId `  G ) ) )
2726adantl 482 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2821, 24, 273eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  ( B G (GId `  G
) ) )
291, 2grporid 27371 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
3029ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  A )
311, 2grporid 27371 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G (GId `  G
) )  =  B )
3231ad2ant2r 783 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( B G (GId
`  G ) )  =  B )
3332adantr 481 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G (GId `  G )
)  =  B )
3428, 30, 333eqtr3d 2664 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  A  =  B )
3534exp45 642 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( y  e.  X  ->  ( ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) ) )
3635rexlimdv 3030 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( E. y  e.  X  ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) )
378, 36mpd 15 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) )
38 oveq1 6657 . . . 4  |-  ( A  =  B  ->  ( A G C )  =  ( B G C ) )
3937, 38impbid1 215 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  <-> 
A  =  B ) )
4039exp43 640 . 2  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B ) ) ) ) )
41403imp2 1282 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348
This theorem is referenced by:  grpoinveu  27373  grpoid  27374  nvrcan  27479  ghomdiv  33691  rngorcan  33716  rngorz  33722
  Copyright terms: Public domain W3C validator