MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   Unicode version

Theorem f1cofveqaeq 6515
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( F `  ( G `  X ) )  =  ( F `
 ( G `  Y ) )  ->  X  =  Y )
)

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  F : B -1-1-> C )
2 f1f 6101 . . . . . 6  |-  ( G : A -1-1-> B  ->  G : A --> B )
3 ffvelrn 6357 . . . . . . . 8  |-  ( ( G : A --> B  /\  X  e.  A )  ->  ( G `  X
)  e.  B )
43ex 450 . . . . . . 7  |-  ( G : A --> B  -> 
( X  e.  A  ->  ( G `  X
)  e.  B ) )
5 ffvelrn 6357 . . . . . . . 8  |-  ( ( G : A --> B  /\  Y  e.  A )  ->  ( G `  Y
)  e.  B )
65ex 450 . . . . . . 7  |-  ( G : A --> B  -> 
( Y  e.  A  ->  ( G `  Y
)  e.  B ) )
74, 6anim12d 586 . . . . . 6  |-  ( G : A --> B  -> 
( ( X  e.  A  /\  Y  e.  A )  ->  (
( G `  X
)  e.  B  /\  ( G `  Y )  e.  B ) ) )
82, 7syl 17 . . . . 5  |-  ( G : A -1-1-> B  -> 
( ( X  e.  A  /\  Y  e.  A )  ->  (
( G `  X
)  e.  B  /\  ( G `  Y )  e.  B ) ) )
98adantl 482 . . . 4  |-  ( ( F : B -1-1-> C  /\  G : A -1-1-> B
)  ->  ( ( X  e.  A  /\  Y  e.  A )  ->  ( ( G `  X )  e.  B  /\  ( G `  Y
)  e.  B ) ) )
109imp 445 . . 3  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( G `  X )  e.  B  /\  ( G `  Y
)  e.  B ) )
11 f1veqaeq 6514 . . 3  |-  ( ( F : B -1-1-> C  /\  ( ( G `  X )  e.  B  /\  ( G `  Y
)  e.  B ) )  ->  ( ( F `  ( G `  X ) )  =  ( F `  ( G `  Y )
)  ->  ( G `  X )  =  ( G `  Y ) ) )
121, 10, 11syl2an2r 876 . 2  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( F `  ( G `  X ) )  =  ( F `
 ( G `  Y ) )  -> 
( G `  X
)  =  ( G `
 Y ) ) )
13 f1veqaeq 6514 . . 3  |-  ( ( G : A -1-1-> B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  (
( G `  X
)  =  ( G `
 Y )  ->  X  =  Y )
)
1413adantll 750 . 2  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( G `  X )  =  ( G `  Y )  ->  X  =  Y ) )
1512, 14syld 47 1  |-  ( ( ( F : B -1-1-> C  /\  G : A -1-1-> B )  /\  ( X  e.  A  /\  Y  e.  A ) )  -> 
( ( F `  ( G `  X ) )  =  ( F `
 ( G `  Y ) )  ->  X  =  Y )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   -->wf 5884   -1-1->wf1 5885   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  uspgrn2crct  26700
  Copyright terms: Public domain W3C validator