MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrn2crct Structured version   Visualization version   Unicode version

Theorem uspgrn2crct 26700
Description: In a simple pseudograph there are no circuits with length 2 (consisting of two edges). (Contributed by Alexander van der Vekens, 9-Nov-2017.) (Revised by AV, 3-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
uspgrn2crct  |-  ( ( G  e. USPGraph  /\  F (Circuits `  G ) P )  ->  ( # `  F
)  =/=  2 )

Proof of Theorem uspgrn2crct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crctprop 26687 . . 3  |-  ( F (Circuits `  G ) P  ->  ( F (Trails `  G ) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) )
2 istrl 26593 . . . . . . 7  |-  ( F (Trails `  G ) P 
<->  ( F (Walks `  G ) P  /\  Fun  `' F ) )
3 uspgrupgr 26071 . . . . . . . . 9  |-  ( G  e. USPGraph  ->  G  e. UPGraph  )
4 eqid 2622 . . . . . . . . . . . . 13  |-  (Vtx `  G )  =  (Vtx
`  G )
5 eqid 2622 . . . . . . . . . . . . 13  |-  (iEdg `  G )  =  (iEdg `  G )
64, 5upgriswlk 26537 . . . . . . . . . . . 12  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  (iEdg `  G
)  /\  P :
( 0 ... ( # `
 F ) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
7 preq2 4269 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P `  2 )  =  ( P ` 
0 )  ->  { ( P `  1 ) ,  ( P ` 
2 ) }  =  { ( P ` 
1 ) ,  ( P `  0 ) } )
8 prcom 4267 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  { ( P `  1 ) ,  ( P ` 
0 ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) }
97, 8syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P `  2 )  =  ( P ` 
0 )  ->  { ( P `  1 ) ,  ( P ` 
2 ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
109eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  { ( P `  1 ) ,  ( P ` 
2 ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
1110eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  (
( (iEdg `  G
) `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) }  <->  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) } ) )
1211anbi2d 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  (
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  <->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  0
) ,  ( P `
 1 ) } ) ) )
1312ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P ` 
0 )  =  ( P `  2 )  /\  ( ( # `  F )  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) ) )  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  <->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  0
) ,  ( P `
 1 ) } ) ) )
14 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  ( (iEdg `  G ) `  ( F `  0 )
)  =  ( (iEdg `  G ) `  ( F `  1 )
) )
154, 5uspgrf 26049 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
1615adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  `' F  /\  G  e. USPGraph  )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
1716adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
1817adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  /\  F  e. Word  dom  (iEdg `  G ) )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
19 df-f1 5893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
)  <->  ( F :
( 0..^ ( # `  F ) ) --> dom  (iEdg `  G )  /\  Fun  `' F ) )
2019simplbi2 655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( F : ( 0..^ (
# `  F )
) --> dom  (iEdg `  G
)  ->  ( Fun  `' F  ->  F :
( 0..^ ( # `  F ) ) -1-1-> dom  (iEdg `  G ) ) )
21 wrdf 13310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( F  e. Word  dom  (iEdg `  G
)  ->  F :
( 0..^ ( # `  F ) ) --> dom  (iEdg `  G )
)
2220, 21syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Fun  `' F  ->  ( F  e. Word  dom  (iEdg `  G
)  ->  F :
( 0..^ ( # `  F ) ) -1-1-> dom  (iEdg `  G ) ) )
2322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Fun  `' F  /\  G  e. USPGraph  )  ->  ( F  e. Word  dom  (iEdg `  G )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
) ) )
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( F  e. Word  dom  (iEdg `  G )  ->  F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G ) ) )
2524imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  /\  F  e. Word  dom  (iEdg `  G ) )  ->  F : ( 0..^ ( # `  F
) ) -1-1-> dom  (iEdg `  G ) )
26 2nn 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  2  e.  NN
27 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( 0  e.  ( 0..^ 2 )  <->  2  e.  NN )
2826, 27mpbir 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  0  e.  ( 0..^ 2 )
29 1nn0 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  1  e.  NN0
30 1lt2 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  1  <  2
31 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( 1  e.  ( 0..^ 2 )  <->  ( 1  e. 
NN0  /\  2  e.  NN  /\  1  <  2
) )
3229, 26, 30, 31mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  ( 0..^ 2 )
3328, 32pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 0  e.  ( 0..^ 2 )  /\  1  e.  ( 0..^ 2 ) )
34 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  ( 0..^ 2 ) )
3534eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  F )  =  2  ->  (
0  e.  ( 0..^ ( # `  F
) )  <->  0  e.  ( 0..^ 2 ) ) )
3634eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  F )  =  2  ->  (
1  e.  ( 0..^ ( # `  F
) )  <->  1  e.  ( 0..^ 2 ) ) )
3735, 36anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  F )  =  2  ->  (
( 0  e.  ( 0..^ ( # `  F
) )  /\  1  e.  ( 0..^ ( # `  F ) ) )  <-> 
( 0  e.  ( 0..^ 2 )  /\  1  e.  ( 0..^ 2 ) ) ) )
3833, 37mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  F )  =  2  ->  (
0  e.  ( 0..^ ( # `  F
) )  /\  1  e.  ( 0..^ ( # `  F ) ) ) )
3938ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  /\  F  e. Word  dom  (iEdg `  G ) )  ->  ( 0  e.  ( 0..^ ( # `  F ) )  /\  1  e.  ( 0..^ ( # `  F
) ) ) )
40 f1cofveqaeq 6515 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  /\  F : ( 0..^ (
# `  F )
) -1-1-> dom  (iEdg `  G
) )  /\  (
0  e.  ( 0..^ ( # `  F
) )  /\  1  e.  ( 0..^ ( # `  F ) ) ) )  ->  ( (
(iEdg `  G ) `  ( F `  0
) )  =  ( (iEdg `  G ) `  ( F `  1
) )  ->  0  =  1 ) )
4118, 25, 39, 40syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  /\  F  e. Word  dom  (iEdg `  G ) )  ->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  ( (iEdg `  G ) `  ( F `  1 )
)  ->  0  = 
1 ) )
42 0ne1 11088 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  =/=  1
43 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  =  1  ->  (
0  =/=  1  -> 
( P `  0
)  =/=  ( P `
 2 ) ) )
4441, 42, 43syl6mpi 67 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  /\  F  e. Word  dom  (iEdg `  G ) )  ->  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  ( (iEdg `  G ) `  ( F `  1 )
)  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4544adantll 750 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( P ` 
0 )  =  ( P `  2 )  /\  ( ( # `  F )  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) ) )  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( (
(iEdg `  G ) `  ( F `  0
) )  =  ( (iEdg `  G ) `  ( F `  1
) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4614, 45syl5 34 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P ` 
0 )  =  ( P `  2 )  /\  ( ( # `  F )  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) ) )  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  0
) ,  ( P `
 1 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4713, 46sylbid 230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( P ` 
0 )  =  ( P `  2 )  /\  ( ( # `  F )  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) ) )  /\  F  e. Word  dom  (iEdg `  G )
)  ->  ( (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4847expimpd 629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P `  0
)  =  ( P `
 2 )  /\  ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) ) )  ->  ( ( F  e. Word  dom  (iEdg `  G )  /\  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
4948ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( P `  0 )  =  ( P ` 
2 )  ->  (
( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
50 2a1 28 . . . . . . . . . . . . . . . . . 18  |-  ( ( P `  0 )  =/=  ( P ` 
2 )  ->  (
( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
5149, 50pm2.61ine 2877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) )
52 fzo0to2pr 12553 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0..^ 2 )  =  {
0 ,  1 }
5334, 52syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  F )  =  2  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
5453raleqdv 3144 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  F )  =  2  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  { 0 ,  1 }  ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
55 2wlklem 26563 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. k  e.  { 0 ,  1 }  (
(iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) }  <-> 
( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )
5654, 55syl6bb 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  2  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( (
(iEdg `  G ) `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) }  /\  ( (iEdg `  G ) `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )
5756anbi2d 740 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  F )  =  2  ->  (
( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  <-> 
( F  e. Word  dom  (iEdg `  G )  /\  ( ( (iEdg `  G ) `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( (iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) ) ) )
58 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  F )  =  2  ->  ( P `  ( # `  F
) )  =  ( P `  2 ) )
5958neeq2d 2854 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  F )  =  2  ->  (
( P `  0
)  =/=  ( P `
 ( # `  F
) )  <->  ( P `  0 )  =/=  ( P `  2
) ) )
6057, 59imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  F )  =  2  ->  (
( ( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) )  <->  ( ( F  e. Word  dom  (iEdg `  G )  /\  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
6160adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( ( ( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) )  <->  ( ( F  e. Word  dom  (iEdg `  G )  /\  (
( (iEdg `  G
) `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
(iEdg `  G ) `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )  ->  ( P `  0 )  =/=  ( P `  2
) ) ) )
6251, 61mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  F
)  =  2  /\  ( Fun  `' F  /\  G  e. USPGraph  ) )  ->  ( ( F  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 0..^ ( # `  F ) ) ( (iEdg `  G ) `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } )  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )
6362ex 450 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  2  ->  (
( Fun  `' F  /\  G  e. USPGraph  )  -> 
( ( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) ) ) )
6463com13 88 . . . . . . . . . . . . . 14  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( ( Fun  `' F  /\  G  e. USPGraph  )  ->  ( ( # `  F )  =  2  ->  ( P ` 
0 )  =/=  ( P `  ( # `  F
) ) ) ) )
6564expd 452 . . . . . . . . . . . . 13  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( Fun  `' F  ->  ( G  e. USPGraph  ->  ( ( # `  F
)  =  2  -> 
( P `  0
)  =/=  ( P `
 ( # `  F
) ) ) ) ) )
66653adant2 1080 . . . . . . . . . . . 12  |-  ( ( F  e. Word  dom  (iEdg `  G )  /\  P : ( 0 ... ( # `  F
) ) --> (Vtx `  G )  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( (iEdg `  G ) `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( Fun  `' F  ->  ( G  e. USPGraph  ->  ( ( # `  F
)  =  2  -> 
( P `  0
)  =/=  ( P `
 ( # `  F
) ) ) ) ) )
676, 66syl6bi 243 . . . . . . . . . . 11  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  -> 
( Fun  `' F  ->  ( G  e. USPGraph  ->  (
( # `  F )  =  2  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) ) ) ) )
6867impd 447 . . . . . . . . . 10  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  Fun  `' F
)  ->  ( G  e. USPGraph 
->  ( ( # `  F
)  =  2  -> 
( P `  0
)  =/=  ( P `
 ( # `  F
) ) ) ) ) )
6968com23 86 . . . . . . . . 9  |-  ( G  e. UPGraph  ->  ( G  e. USPGraph  ->  ( ( F (Walks `  G ) P  /\  Fun  `' F )  ->  (
( # `  F )  =  2  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) ) ) )
703, 69mpcom 38 . . . . . . . 8  |-  ( G  e. USPGraph  ->  ( ( F (Walks `  G ) P  /\  Fun  `' F
)  ->  ( ( # `
 F )  =  2  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) ) )
7170com12 32 . . . . . . 7  |-  ( ( F (Walks `  G
) P  /\  Fun  `' F )  ->  ( G  e. USPGraph  ->  ( (
# `  F )  =  2  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) ) )
722, 71sylbi 207 . . . . . 6  |-  ( F (Trails `  G ) P  ->  ( G  e. USPGraph  ->  ( ( # `  F
)  =  2  -> 
( P `  0
)  =/=  ( P `
 ( # `  F
) ) ) ) )
7372imp 445 . . . . 5  |-  ( ( F (Trails `  G
) P  /\  G  e. USPGraph  )  ->  ( ( # `
 F )  =  2  ->  ( P `  0 )  =/=  ( P `  ( # `
 F ) ) ) )
7473necon2d 2817 . . . 4  |-  ( ( F (Trails `  G
) P  /\  G  e. USPGraph  )  ->  ( ( P `  0 )  =  ( P `  ( # `  F ) )  ->  ( # `  F
)  =/=  2 ) )
7574impancom 456 . . 3  |-  ( ( F (Trails `  G
) P  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  ( G  e. USPGraph  ->  ( # `  F )  =/=  2
) )
761, 75syl 17 . 2  |-  ( F (Circuits `  G ) P  ->  ( G  e. USPGraph  ->  ( # `  F
)  =/=  2 ) )
7776impcom 446 1  |-  ( ( G  e. USPGraph  /\  F (Circuits `  G ) P )  ->  ( # `  F
)  =/=  2 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   USPGraph cuspgr 26043  Walkscwlks 26492  Trailsctrls 26587  Circuitsccrcts 26679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-wlks 26495  df-trls 26589  df-crcts 26681
This theorem is referenced by:  usgrn2cycl  26701
  Copyright terms: Public domain W3C validator