MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvd Structured version   Visualization version   Unicode version

Theorem f1ocnvd 6884
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1od.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
f1od.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
f1od.4  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
Assertion
Ref Expression
f1ocnvd  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)    W( x, y)    X( x, y)

Proof of Theorem f1ocnvd
StepHypRef Expression
1 f1od.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  W )
21ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  A  C  e.  W )
3 f1od.1 . . . . 5  |-  F  =  ( x  e.  A  |->  C )
43fnmpt 6020 . . . 4  |-  ( A. x  e.  A  C  e.  W  ->  F  Fn  A )
52, 4syl 17 . . 3  |-  ( ph  ->  F  Fn  A )
6 f1od.3 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  X )
76ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. y  e.  B  D  e.  X )
8 eqid 2622 . . . . . 6  |-  ( y  e.  B  |->  D )  =  ( y  e.  B  |->  D )
98fnmpt 6020 . . . . 5  |-  ( A. y  e.  B  D  e.  X  ->  ( y  e.  B  |->  D )  Fn  B )
107, 9syl 17 . . . 4  |-  ( ph  ->  ( y  e.  B  |->  D )  Fn  B
)
11 f1od.4 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
1211opabbidv 4716 . . . . . 6  |-  ( ph  ->  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( y  e.  B  /\  x  =  D ) } )
13 df-mpt 4730 . . . . . . . . 9  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
143, 13eqtri 2644 . . . . . . . 8  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
1514cnveqi 5297 . . . . . . 7  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  C ) }
16 cnvopab 5533 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
1715, 16eqtri 2644 . . . . . 6  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  C ) }
18 df-mpt 4730 . . . . . 6  |-  ( y  e.  B  |->  D )  =  { <. y ,  x >.  |  (
y  e.  B  /\  x  =  D ) }
1912, 17, 183eqtr4g 2681 . . . . 5  |-  ( ph  ->  `' F  =  (
y  e.  B  |->  D ) )
2019fneq1d 5981 . . . 4  |-  ( ph  ->  ( `' F  Fn  B 
<->  ( y  e.  B  |->  D )  Fn  B
) )
2110, 20mpbird 247 . . 3  |-  ( ph  ->  `' F  Fn  B
)
22 dff1o4 6145 . . 3  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
235, 21, 22sylanbrc 698 . 2  |-  ( ph  ->  F : A -1-1-onto-> B )
2423, 19jca 554 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {copab 4712    |-> cmpt 4729   `'ccnv 5113    Fn wfn 5883   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  f1od  6885  f1ocnv2d  6886  pw2f1ocnv  37604
  Copyright terms: Public domain W3C validator