| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnv2d | Structured version Visualization version Unicode version | ||
| Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| f1od.1 |
|
| f1o2d.2 |
|
| f1o2d.3 |
|
| f1o2d.4 |
|
| Ref | Expression |
|---|---|
| f1ocnv2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 |
. 2
| |
| 2 | f1o2d.2 |
. 2
| |
| 3 | f1o2d.3 |
. 2
| |
| 4 | eleq1a 2696 |
. . . . . 6
| |
| 5 | 2, 4 | syl 17 |
. . . . 5
|
| 6 | 5 | impr 649 |
. . . 4
|
| 7 | f1o2d.4 |
. . . . . . . 8
| |
| 8 | 7 | biimpar 502 |
. . . . . . 7
|
| 9 | 8 | exp42 639 |
. . . . . 6
|
| 10 | 9 | com34 91 |
. . . . 5
|
| 11 | 10 | imp32 449 |
. . . 4
|
| 12 | 6, 11 | jcai 559 |
. . 3
|
| 13 | eleq1a 2696 |
. . . . . 6
| |
| 14 | 3, 13 | syl 17 |
. . . . 5
|
| 15 | 14 | impr 649 |
. . . 4
|
| 16 | 7 | biimpa 501 |
. . . . . . . 8
|
| 17 | 16 | exp42 639 |
. . . . . . 7
|
| 18 | 17 | com23 86 |
. . . . . 6
|
| 19 | 18 | com34 91 |
. . . . 5
|
| 20 | 19 | imp32 449 |
. . . 4
|
| 21 | 15, 20 | jcai 559 |
. . 3
|
| 22 | 12, 21 | impbida 877 |
. 2
|
| 23 | 1, 2, 3, 22 | f1ocnvd 6884 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: f1o2d 6887 negf1o 10460 negiso 11003 iccf1o 12316 bitsf1ocnv 15166 grpinvcnv 17483 grplactcnv 17518 issrngd 18861 opncldf1 20888 txhmeo 21606 ptuncnv 21610 icopnfcnv 22741 iccpnfcnv 22743 xrge0iifcnv 29979 rfovcnvf1od 38298 |
| Copyright terms: Public domain | W3C validator |