| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1omvdmvd | Structured version Visualization version Unicode version | ||
| Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| f1omvdmvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . 5
| |
| 2 | f1ofn 6138 |
. . . . . . 7
| |
| 3 | 2 | adantr 481 |
. . . . . 6
|
| 4 | difss 3737 |
. . . . . . . . 9
| |
| 5 | dmss 5323 |
. . . . . . . . 9
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . 8
|
| 7 | f1odm 6141 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl5sseq 3653 |
. . . . . . 7
|
| 9 | 8 | sselda 3603 |
. . . . . 6
|
| 10 | fnelnfp 6443 |
. . . . . 6
| |
| 11 | 3, 9, 10 | syl2anc 693 |
. . . . 5
|
| 12 | 1, 11 | mpbid 222 |
. . . 4
|
| 13 | f1of1 6136 |
. . . . . . 7
| |
| 14 | 13 | adantr 481 |
. . . . . 6
|
| 15 | f1of 6137 |
. . . . . . . 8
| |
| 16 | 15 | adantr 481 |
. . . . . . 7
|
| 17 | 16, 9 | ffvelrnd 6360 |
. . . . . 6
|
| 18 | f1fveq 6519 |
. . . . . 6
| |
| 19 | 14, 17, 9, 18 | syl12anc 1324 |
. . . . 5
|
| 20 | 19 | necon3bid 2838 |
. . . 4
|
| 21 | 12, 20 | mpbird 247 |
. . 3
|
| 22 | fnelnfp 6443 |
. . . 4
| |
| 23 | 3, 17, 22 | syl2anc 693 |
. . 3
|
| 24 | 21, 23 | mpbird 247 |
. 2
|
| 25 | eldifsn 4317 |
. 2
| |
| 26 | 24, 12, 25 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: f1otrspeq 17867 symggen 17890 |
| Copyright terms: Public domain | W3C validator |