MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   Unicode version

Theorem f1opw2 6888
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6889 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1  |-  ( ph  ->  F : A -1-1-onto-> B )
f1opw2.2  |-  ( ph  ->  ( `' F "
a )  e.  _V )
f1opw2.3  |-  ( ph  ->  ( F " b
)  e.  _V )
Assertion
Ref Expression
f1opw2  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Distinct variable groups:    a, b, A    B, a, b    F, a, b    ph, a, b

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2622 . 2  |-  ( b  e.  ~P A  |->  ( F " b ) )  =  ( b  e.  ~P A  |->  ( F " b ) )
2 imassrn 5477 . . . . 5  |-  ( F
" b )  C_  ran  F
3 f1opw2.1 . . . . . . 7  |-  ( ph  ->  F : A -1-1-onto-> B )
4 f1ofo 6144 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
53, 4syl 17 . . . . . 6  |-  ( ph  ->  F : A -onto-> B
)
6 forn 6118 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
75, 6syl 17 . . . . 5  |-  ( ph  ->  ran  F  =  B )
82, 7syl5sseq 3653 . . . 4  |-  ( ph  ->  ( F " b
)  C_  B )
9 f1opw2.3 . . . . 5  |-  ( ph  ->  ( F " b
)  e.  _V )
10 elpwg 4166 . . . . 5  |-  ( ( F " b )  e.  _V  ->  (
( F " b
)  e.  ~P B  <->  ( F " b ) 
C_  B ) )
119, 10syl 17 . . . 4  |-  ( ph  ->  ( ( F "
b )  e.  ~P B 
<->  ( F " b
)  C_  B )
)
128, 11mpbird 247 . . 3  |-  ( ph  ->  ( F " b
)  e.  ~P B
)
1312adantr 481 . 2  |-  ( (
ph  /\  b  e.  ~P A )  ->  ( F " b )  e. 
~P B )
14 imassrn 5477 . . . . 5  |-  ( `' F " a ) 
C_  ran  `' F
15 dfdm4 5316 . . . . . 6  |-  dom  F  =  ran  `' F
16 f1odm 6141 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
173, 16syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
1815, 17syl5eqr 2670 . . . . 5  |-  ( ph  ->  ran  `' F  =  A )
1914, 18syl5sseq 3653 . . . 4  |-  ( ph  ->  ( `' F "
a )  C_  A
)
20 f1opw2.2 . . . . 5  |-  ( ph  ->  ( `' F "
a )  e.  _V )
21 elpwg 4166 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2220, 21syl 17 . . . 4  |-  ( ph  ->  ( ( `' F " a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
2319, 22mpbird 247 . . 3  |-  ( ph  ->  ( `' F "
a )  e.  ~P A )
2423adantr 481 . 2  |-  ( (
ph  /\  a  e.  ~P B )  ->  ( `' F " a )  e.  ~P A )
25 elpwi 4168 . . . . . . 7  |-  ( a  e.  ~P B  -> 
a  C_  B )
2625adantl 482 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  a  C_  B )
27 foimacnv 6154 . . . . . 6  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
285, 26, 27syl2an 494 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( F "
( `' F "
a ) )  =  a )
2928eqcomd 2628 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  a  =  ( F " ( `' F " a ) ) )
30 imaeq2 5462 . . . . 5  |-  ( b  =  ( `' F " a )  ->  ( F " b )  =  ( F " ( `' F " a ) ) )
3130eqeq2d 2632 . . . 4  |-  ( b  =  ( `' F " a )  ->  (
a  =  ( F
" b )  <->  a  =  ( F " ( `' F " a ) ) ) )
3229, 31syl5ibrcom 237 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  ->  a  =  ( F "
b ) ) )
33 f1of1 6136 . . . . . . 7  |-  ( F : A -1-1-onto-> B  ->  F : A -1-1-> B )
343, 33syl 17 . . . . . 6  |-  ( ph  ->  F : A -1-1-> B
)
35 elpwi 4168 . . . . . . 7  |-  ( b  e.  ~P A  -> 
b  C_  A )
3635adantr 481 . . . . . 6  |-  ( ( b  e.  ~P A  /\  a  e.  ~P B )  ->  b  C_  A )
37 f1imacnv 6153 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  b  C_  A )  ->  ( `' F " ( F " b
) )  =  b )
3834, 36, 37syl2an 494 . . . . 5  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( `' F " ( F " b
) )  =  b )
3938eqcomd 2628 . . . 4  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  b  =  ( `' F " ( F
" b ) ) )
40 imaeq2 5462 . . . . 5  |-  ( a  =  ( F "
b )  ->  ( `' F " a )  =  ( `' F " ( F " b
) ) )
4140eqeq2d 2632 . . . 4  |-  ( a  =  ( F "
b )  ->  (
b  =  ( `' F " a )  <-> 
b  =  ( `' F " ( F
" b ) ) ) )
4239, 41syl5ibrcom 237 . . 3  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( a  =  ( F " b
)  ->  b  =  ( `' F " a ) ) )
4332, 42impbid 202 . 2  |-  ( (
ph  /\  ( b  e.  ~P A  /\  a  e.  ~P B ) )  ->  ( b  =  ( `' F "
a )  <->  a  =  ( F " b ) ) )
441, 13, 24, 43f1o2d 6887 1  |-  ( ph  ->  ( b  e.  ~P A  |->  ( F "
b ) ) : ~P A -1-1-onto-> ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  f1opw  6889
  Copyright terms: Public domain W3C validator