| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1opw2 | Structured version Visualization version Unicode version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6889 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1opw2.1 |
|
| f1opw2.2 |
|
| f1opw2.3 |
|
| Ref | Expression |
|---|---|
| f1opw2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | imassrn 5477 |
. . . . 5
| |
| 3 | f1opw2.1 |
. . . . . . 7
| |
| 4 | f1ofo 6144 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 17 |
. . . . . 6
|
| 6 | forn 6118 |
. . . . . 6
| |
| 7 | 5, 6 | syl 17 |
. . . . 5
|
| 8 | 2, 7 | syl5sseq 3653 |
. . . 4
|
| 9 | f1opw2.3 |
. . . . 5
| |
| 10 | elpwg 4166 |
. . . . 5
| |
| 11 | 9, 10 | syl 17 |
. . . 4
|
| 12 | 8, 11 | mpbird 247 |
. . 3
|
| 13 | 12 | adantr 481 |
. 2
|
| 14 | imassrn 5477 |
. . . . 5
| |
| 15 | dfdm4 5316 |
. . . . . 6
| |
| 16 | f1odm 6141 |
. . . . . . 7
| |
| 17 | 3, 16 | syl 17 |
. . . . . 6
|
| 18 | 15, 17 | syl5eqr 2670 |
. . . . 5
|
| 19 | 14, 18 | syl5sseq 3653 |
. . . 4
|
| 20 | f1opw2.2 |
. . . . 5
| |
| 21 | elpwg 4166 |
. . . . 5
| |
| 22 | 20, 21 | syl 17 |
. . . 4
|
| 23 | 19, 22 | mpbird 247 |
. . 3
|
| 24 | 23 | adantr 481 |
. 2
|
| 25 | elpwi 4168 |
. . . . . . 7
| |
| 26 | 25 | adantl 482 |
. . . . . 6
|
| 27 | foimacnv 6154 |
. . . . . 6
| |
| 28 | 5, 26, 27 | syl2an 494 |
. . . . 5
|
| 29 | 28 | eqcomd 2628 |
. . . 4
|
| 30 | imaeq2 5462 |
. . . . 5
| |
| 31 | 30 | eqeq2d 2632 |
. . . 4
|
| 32 | 29, 31 | syl5ibrcom 237 |
. . 3
|
| 33 | f1of1 6136 |
. . . . . . 7
| |
| 34 | 3, 33 | syl 17 |
. . . . . 6
|
| 35 | elpwi 4168 |
. . . . . . 7
| |
| 36 | 35 | adantr 481 |
. . . . . 6
|
| 37 | f1imacnv 6153 |
. . . . . 6
| |
| 38 | 34, 36, 37 | syl2an 494 |
. . . . 5
|
| 39 | 38 | eqcomd 2628 |
. . . 4
|
| 40 | imaeq2 5462 |
. . . . 5
| |
| 41 | 40 | eqeq2d 2632 |
. . . 4
|
| 42 | 39, 41 | syl5ibrcom 237 |
. . 3
|
| 43 | 32, 42 | impbid 202 |
. 2
|
| 44 | 1, 13, 24, 43 | f1o2d 6887 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 |
| This theorem is referenced by: f1opw 6889 |
| Copyright terms: Public domain | W3C validator |