MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2d Structured version   Visualization version   Unicode version

Theorem f1o2d 6887
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1o2d  |-  ( ph  ->  F : A -1-1-onto-> B )
Distinct variable groups:    x, y, A    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1o2d
StepHypRef Expression
1 f1od.1 . . 3  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 f1o2d.4 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
51, 2, 3, 4f1ocnv2d 6886 . 2  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
65simpld 475 1  |-  ( ph  ->  F : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   `'ccnv 5113   -1-1-onto->wf1o 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895
This theorem is referenced by:  f1opw2  6888  en3d  7992  f1opwfi  8270  mapfien  8313  fin23lem22  9149  incexclem  14568  dvdsflip  15039  hashgcdlem  15493  grplmulf1o  17489  conjghm  17691  gapm  17739  psrbagconf1o  19374  hmeoimaf1o  21573  itg1mulc  23471  resinf1o  24282  eff1olem  24294  sqff1o  24908  dvdsppwf1o  24912  dvdsflf1o  24913  fcobij  29500
  Copyright terms: Public domain W3C validator