Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovmpt4g Structured version   Visualization version   Unicode version

Theorem aovmpt4g 41281
Description: Value of a function given by the "maps to" notation, analogous to ovmpt4g 6783. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovmpt4g.3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
aovmpt4g  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  -> (( x F y))  =  C )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, V, y
Allowed substitution hints:    F( x, y)

Proof of Theorem aovmpt4g
StepHypRef Expression
1 aovmpt4g.3 . . . . . . 7  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21dmmpt2g 7243 . . . . . 6  |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
3 opelxpi 5148 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<. x ,  y >.  e.  ( A  X.  B
) )
4 eleq2 2690 . . . . . . 7  |-  ( dom 
F  =  ( A  X.  B )  -> 
( <. x ,  y
>.  e.  dom  F  <->  <. x ,  y >.  e.  ( A  X.  B ) ) )
53, 4syl5ibr 236 . . . . . 6  |-  ( dom 
F  =  ( A  X.  B )  -> 
( ( x  e.  A  /\  y  e.  B )  ->  <. x ,  y >.  e.  dom  F ) )
62, 5syl 17 . . . . 5  |-  ( C  e.  V  ->  (
( x  e.  A  /\  y  e.  B
)  ->  <. x ,  y >.  e.  dom  F ) )
76impcom 446 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  C  e.  V )  ->  <. x ,  y >.  e.  dom  F )
873impa 1259 . . 3  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  -> 
<. x ,  y >.  e.  dom  F )
91mpt2fun 6762 . . . 4  |-  Fun  F
10 funres 5929 . . . 4  |-  ( Fun 
F  ->  Fun  ( F  |`  { <. x ,  y
>. } ) )
119, 10ax-mp 5 . . 3  |-  Fun  ( F  |`  { <. x ,  y >. } )
12 df-dfat 41196 . . . 4  |-  ( F defAt  <. x ,  y >.  <->  (
<. x ,  y >.  e.  dom  F  /\  Fun  ( F  |`  { <. x ,  y >. } ) ) )
13 aovfundmoveq 41261 . . . 4  |-  ( F defAt  <. x ,  y >.  -> (( x F y))  =  ( x F y ) )
1412, 13sylbir 225 . . 3  |-  ( (
<. x ,  y >.  e.  dom  F  /\  Fun  ( F  |`  { <. x ,  y >. } ) )  -> (( x F
y))  =  ( x F y ) )
158, 11, 14sylancl 694 . 2  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  -> (( x F y))  =  ( x F y ) )
161ovmpt4g 6783 . 2  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  ->  ( x F y )  =  C )
1715, 16eqtrd 2656 1  |-  ( ( x  e.  A  /\  y  e.  B  /\  C  e.  V )  -> (( x F y))  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {csn 4177   <.cop 4183    X. cxp 5112   dom cdm 5114    |` cres 5116   Fun wfun 5882  (class class class)co 6650    |-> cmpt2 6652   defAt wdfat 41193   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator