Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivval Structured version   Visualization version   Unicode version

Theorem fdivval 42333
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
fdivval  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F /_f  G )  =  ( ( F  oF  /  G
)  |`  ( G supp  0
) ) )

Proof of Theorem fdivval
Dummy variables  x  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fdiv 42332 . . 3  |- /_f  =  ( f  e.  _V , 
g  e.  _V  |->  ( ( f  oF  /  g )  |`  ( g supp  0 ) ) )
21a1i 11 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  -> /_f  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( ( f  oF  /  g
)  |`  ( g supp  0
) ) ) )
3 oveq12 6659 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  oF  /  g )  =  ( F  oF  /  G ) )
4 oveq1 6657 . . . . 5  |-  ( g  =  G  ->  (
g supp  0 )  =  ( G supp  0 ) )
54adantl 482 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( g supp  0 )  =  ( G supp  0
) )
63, 5reseq12d 5397 . . 3  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f  oF  /  g )  |`  ( g supp  0 ) )  =  ( ( F  oF  /  G )  |`  ( G supp  0 ) ) )
76adantl 482 . 2  |-  ( ( ( F  e.  V  /\  G  e.  W
)  /\  ( f  =  F  /\  g  =  G ) )  -> 
( ( f  oF  /  g )  |`  ( g supp  0 ) )  =  ( ( F  oF  /  G )  |`  ( G supp  0 ) ) )
8 elex 3212 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
98adantr 481 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  F  e.  _V )
10 elex 3212 . . 3  |-  ( G  e.  W  ->  G  e.  _V )
1110adantl 482 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  G  e.  _V )
12 funmpt 5926 . . . 4  |-  Fun  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x )  /  ( G `  x )
) )
13 offval0 42299 . . . . 5  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF  /  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  / 
( G `  x
) ) ) )
1413funeqd 5910 . . . 4  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( Fun  ( F  oF  /  G
)  <->  Fun  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  /  ( G `  x ) ) ) ) )
1512, 14mpbiri 248 . . 3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  Fun  ( F  oF  /  G )
)
16 ovex 6678 . . 3  |-  ( G supp  0 )  e.  _V
17 resfunexg 6479 . . 3  |-  ( ( Fun  ( F  oF  /  G )  /\  ( G supp  0 )  e.  _V )  -> 
( ( F  oF  /  G )  |`  ( G supp  0 ) )  e.  _V )
1815, 16, 17sylancl 694 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF  /  G )  |`  ( G supp  0 ) )  e.  _V )
192, 7, 9, 11, 18ovmpt2d 6788 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F /_f  G )  =  ( ( F  oF  /  G
)  |`  ( G supp  0
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    |-> cmpt 4729   dom cdm 5114    |` cres 5116   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   supp csupp 7295   0cc0 9936    / cdiv 10684   /_f cfdiv 42331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-fdiv 42332
This theorem is referenced by:  fdivmpt  42334
  Copyright terms: Public domain W3C validator