Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmpt Structured version   Visualization version   Unicode version

Theorem fdivmpt 42334
Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivmpt  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( F /_f  G )  =  ( x  e.  ( G supp  0 ) 
|->  ( ( F `  x )  /  ( G `  x )
) ) )
Distinct variable groups:    x, A    x, F    x, G    x, V

Proof of Theorem fdivmpt
StepHypRef Expression
1 fex 6490 . . . 4  |-  ( ( F : A --> CC  /\  A  e.  V )  ->  F  e.  _V )
213adant2 1080 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  F  e.  _V )
3 fex 6490 . . . 4  |-  ( ( G : A --> CC  /\  A  e.  V )  ->  G  e.  _V )
433adant1 1079 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  G  e.  _V )
5 fdivval 42333 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F /_f  G )  =  ( ( F  oF  /  G
)  |`  ( G supp  0
) ) )
6 offres 7163 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( ( F  oF  /  G )  |`  ( G supp  0 ) )  =  ( ( F  |`  ( G supp  0 ) )  oF  /  ( G  |`  ( G supp  0 ) ) ) )
75, 6eqtrd 2656 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F /_f  G )  =  ( ( F  |`  ( G supp  0 ) )  oF  / 
( G  |`  ( G supp  0 ) ) ) )
82, 4, 7syl2anc 693 . 2  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( F /_f  G )  =  ( ( F  |`  ( G supp  0 ) )  oF  / 
( G  |`  ( G supp  0 ) ) ) )
9 ffn 6045 . . . . 5  |-  ( F : A --> CC  ->  F  Fn  A )
1093ad2ant1 1082 . . . 4  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  F  Fn  A )
11 suppssdm 7308 . . . . 5  |-  ( G supp  0 )  C_  dom  G
12 fdm 6051 . . . . . . 7  |-  ( G : A --> CC  ->  dom 
G  =  A )
1312eqcomd 2628 . . . . . 6  |-  ( G : A --> CC  ->  A  =  dom  G )
14133ad2ant2 1083 . . . . 5  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  A  =  dom  G
)
1511, 14syl5sseqr 3654 . . . 4  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( G supp  0 ) 
C_  A )
16 fnssres 6004 . . . 4  |-  ( ( F  Fn  A  /\  ( G supp  0 )  C_  A )  ->  ( F  |`  ( G supp  0
) )  Fn  ( G supp  0 ) )
1710, 15, 16syl2anc 693 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( F  |`  ( G supp  0 ) )  Fn  ( G supp  0 ) )
18 ffn 6045 . . . . 5  |-  ( G : A --> CC  ->  G  Fn  A )
19183ad2ant2 1083 . . . 4  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  G  Fn  A )
20 fnssres 6004 . . . 4  |-  ( ( G  Fn  A  /\  ( G supp  0 )  C_  A )  ->  ( G  |`  ( G supp  0
) )  Fn  ( G supp  0 ) )
2119, 15, 20syl2anc 693 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( G  |`  ( G supp  0 ) )  Fn  ( G supp  0 ) )
22 ovexd 6680 . . 3  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( G supp  0 )  e.  _V )
23 inidm 3822 . . 3  |-  ( ( G supp  0 )  i^i  ( G supp  0 ) )  =  ( G supp  0 )
24 fvres 6207 . . . 4  |-  ( x  e.  ( G supp  0
)  ->  ( ( F  |`  ( G supp  0
) ) `  x
)  =  ( F `
 x ) )
2524adantl 482 . . 3  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  x  e.  ( G supp  0 )
)  ->  ( ( F  |`  ( G supp  0
) ) `  x
)  =  ( F `
 x ) )
26 fvres 6207 . . . 4  |-  ( x  e.  ( G supp  0
)  ->  ( ( G  |`  ( G supp  0
) ) `  x
)  =  ( G `
 x ) )
2726adantl 482 . . 3  |-  ( ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V
)  /\  x  e.  ( G supp  0 )
)  ->  ( ( G  |`  ( G supp  0
) ) `  x
)  =  ( G `
 x ) )
2817, 21, 22, 22, 23, 25, 27offval 6904 . 2  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( ( F  |`  ( G supp  0 )
)  oF  / 
( G  |`  ( G supp  0 ) ) )  =  ( x  e.  ( G supp  0 ) 
|->  ( ( F `  x )  /  ( G `  x )
) ) )
298, 28eqtrd 2656 1  |-  ( ( F : A --> CC  /\  G : A --> CC  /\  A  e.  V )  ->  ( F /_f  G )  =  ( x  e.  ( G supp  0 ) 
|->  ( ( F `  x )  /  ( G `  x )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295   CCcc 9934   0cc0 9936    / cdiv 10684   /_f cfdiv 42331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-supp 7296  df-fdiv 42332
This theorem is referenced by:  fdivmptf  42335  refdivmptf  42336  fdivmptfv  42339  refdivmptfv  42340
  Copyright terms: Public domain W3C validator