Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  feqresmptf Structured version   Visualization version   Unicode version

Theorem feqresmptf 39433
Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
feqresmptf.1  |-  F/_ x F
feqresmptf.2  |-  ( ph  ->  F : A --> B )
feqresmptf.3  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
feqresmptf  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    F( x)

Proof of Theorem feqresmptf
StepHypRef Expression
1 nfcv 2764 . . 3  |-  F/_ x C
2 feqresmptf.1 . . . 4  |-  F/_ x F
32, 1nfres 5398 . . 3  |-  F/_ x
( F  |`  C )
4 feqresmptf.2 . . . 4  |-  ( ph  ->  F : A --> B )
5 feqresmptf.3 . . . 4  |-  ( ph  ->  C  C_  A )
64, 5fssresd 6071 . . 3  |-  ( ph  ->  ( F  |`  C ) : C --> B )
71, 3, 6feqmptdf 6251 . 2  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( ( F  |`  C ) `  x
) ) )
8 fvres 6207 . . 3  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
98mpteq2ia 4740 . 2  |-  ( x  e.  C  |->  ( ( F  |`  C ) `  x ) )  =  ( x  e.  C  |->  ( F `  x
) )
107, 9syl6eq 2672 1  |-  ( ph  ->  ( F  |`  C )  =  ( x  e.  C  |->  ( F `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   F/_wnfc 2751    C_ wss 3574    |-> cmpt 4729    |` cres 5116   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator