MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   Unicode version

Theorem feqmptdf 6251
Description: Deduction form of dffn5f 6252. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1  |-  F/_ x A
feqmptdf.2  |-  F/_ x F
feqmptdf.3  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
feqmptdf  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )

Proof of Theorem feqmptdf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2  |-  ( ph  ->  F : A --> B )
2 ffn 6045 . 2  |-  ( F : A --> B  ->  F  Fn  A )
3 fnrel 5989 . . . . 5  |-  ( F  Fn  A  ->  Rel  F )
4 feqmptdf.2 . . . . . 6  |-  F/_ x F
5 nfcv 2764 . . . . . 6  |-  F/_ y F
64, 5dfrel4 5585 . . . . 5  |-  ( Rel 
F  <->  F  =  { <. x ,  y >.  |  x F y } )
73, 6sylib 208 . . . 4  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  x F
y } )
8 feqmptdf.1 . . . . . 6  |-  F/_ x A
94, 8nffn 5987 . . . . 5  |-  F/ x  F  Fn  A
10 nfv 1843 . . . . 5  |-  F/ y  F  Fn  A
11 fnbr 5993 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
1211ex 450 . . . . . . 7  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
1312pm4.71rd 667 . . . . . 6  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  x F y ) ) )
14 eqcom 2629 . . . . . . . 8  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
15 fnbrfvb 6236 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
1614, 15syl5bb 272 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
1716pm5.32da 673 . . . . . 6  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  y  =  ( F `  x )
)  <->  ( x  e.  A  /\  x F y ) ) )
1813, 17bitr4d 271 . . . . 5  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  y  =  ( F `  x ) ) ) )
199, 10, 18opabbid 4715 . . . 4  |-  ( F  Fn  A  ->  { <. x ,  y >.  |  x F y }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
207, 19eqtrd 2656 . . 3  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
21 df-mpt 4730 . . 3  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
2220, 21syl6eqr 2674 . 2  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
231, 2, 223syl 18 1  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   class class class wbr 4653   {copab 4712    |-> cmpt 4729   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  esumf1o  30112  feqresmptf  39433  liminfvaluz3  40028  liminfvaluz4  40031  volioofmpt  40211  volicofmpt  40214
  Copyright terms: Public domain W3C validator