Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem2 Structured version   Visualization version   Unicode version

Theorem filnetlem2 32374
Description: Lemma for filnet 32377. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h  |-  H  = 
U_ n  e.  F  ( { n }  X.  n )
filnet.d  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
Assertion
Ref Expression
filnetlem2  |-  ( (  _I  |`  H )  C_  D  /\  D  C_  ( H  X.  H
) )
Distinct variable groups:    x, y, n, F    x, H, y
Allowed substitution hints:    D( x, y, n)    H( n)

Proof of Theorem filnetlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 idref 6499 . . 3  |-  ( (  _I  |`  H )  C_  D  <->  A. z  e.  H  z D z )
2 ssid 3624 . . . . . 6  |-  ( 1st `  z )  C_  ( 1st `  z )
3 filnet.h . . . . . . 7  |-  H  = 
U_ n  e.  F  ( { n }  X.  n )
4 filnet.d . . . . . . 7  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
5 vex 3203 . . . . . . 7  |-  z  e. 
_V
63, 4, 5, 5filnetlem1 32373 . . . . . 6  |-  ( z D z  <->  ( (
z  e.  H  /\  z  e.  H )  /\  ( 1st `  z
)  C_  ( 1st `  z ) ) )
72, 6mpbiran2 954 . . . . 5  |-  ( z D z  <->  ( z  e.  H  /\  z  e.  H ) )
87biimpri 218 . . . 4  |-  ( ( z  e.  H  /\  z  e.  H )  ->  z D z )
98anidms 677 . . 3  |-  ( z  e.  H  ->  z D z )
101, 9mprgbir 2927 . 2  |-  (  _I  |`  H )  C_  D
11 opabssxp 5193 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H
)  /\  ( 1st `  y )  C_  ( 1st `  x ) ) }  C_  ( H  X.  H )
124, 11eqsstri 3635 . 2  |-  D  C_  ( H  X.  H
)
1310, 12pm3.2i 471 1  |-  ( (  _I  |`  H )  C_  D  /\  D  C_  ( H  X.  H
) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   U_ciun 4520   class class class wbr 4653   {copab 4712    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  filnetlem3  32375  filnetlem4  32376
  Copyright terms: Public domain W3C validator