HomeHome Metamath Proof Explorer
Theorem List (p. 324 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 32301-32400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexp510 32301 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  (
 ( ph  /\  ( ( ( ps  /\  ch )  /\  th )  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theoremexp511 32302 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  (
 ( ph  /\  ( ( ps  /\  ( ch 
 /\  th ) )  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theoremexp512 32303 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
 |-  (
 ( ph  /\  ( ( ps  /\  ch )  /\  ( th  /\  ta ) ) )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )
 
Theorem3com12d 32304 Commutation in consequent. Swap 1st and 2nd. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ph  ->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ( ch  /\  ps  /\  th ) )
 
Theoremimp5p 32305 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )   =>    |-  ( ph  ->  ( ps  ->  ( ( ch  /\  th 
 /\  ta )  ->  et )
 ) )
 
Theoremimp5q 32306 A triple importation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )   =>    |-  ( ( ph  /\  ps )  ->  ( ( ch 
 /\  th  /\  ta )  ->  et ) )
 
Theoremecase13d 32307 Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009.)
 |-  ( ph  ->  -.  ch )   &    |-  ( ph  ->  -.  th )   &    |-  ( ph  ->  ( ch  \/  ps 
 \/  th ) )   =>    |-  ( ph  ->  ps )
 
Theoremsubtr 32308 Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x Y   &    |-  F/_ x Z   &    |-  ( x  =  A  ->  X  =  Y )   &    |-  ( x  =  B  ->  X  =  Z )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  Y  =  Z ) )
 
Theoremsubtr2 32309 Transitivity of implicit substitution into a wff. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  =  B  ->  ( ph  <->  ch ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  ( ps  <->  ch ) ) )
 
Theoremtrer 32310* A relation intersected with its converse is an equivalence relation if the relation is transitive. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( A. a A. b A. c ( ( a 
 .<_  b  /\  b  .<_  c )  ->  a  .<_  c )  ->  (  .<_  i^i  `'  .<_  )  Er  dom  (  .<_  i^i  `'  .<_  ) )
 
Theoremelicc3 32311 An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
 |-  (
 ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  B  /\  ( C  =  A  \/  ( A  <  C  /\  C  <  B )  \/  C  =  B ) ) ) )
 
Theoremfinminlem 32312* A useful lemma about finite sets. If a property holds for a finite set, it holds for a minimal set. (Contributed by Jeff Hankins, 4-Dec-2009.)
 |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  Fin  ph  ->  E. x ( ph  /\  A. y
 ( ( y  C_  x  /\  ps )  ->  x  =  y )
 ) )
 
Theoremgtinf 32313* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) (Revised by AV, 10-Oct-2021.)
 |-  (
 ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  x  <_  y
 )  /\  ( A  e.  RR  /\ inf ( S ,  RR ,  <  )  <  A ) )  ->  E. z  e.  S  z  <  A )
 
TheoremgtinfOLD 32314* Any number greater than an infimum is greater than some element of the set. (Contributed by Jeff Hankins, 29-Sep-2013.) Obsolete version of gtinf 32313 as of 10-Oct-2021. (New usage is discouraged.) (Proof modification is discouraged.)
 |-  (
 ( ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  x  <_  y
 )  /\  ( A  e.  RR  /\  sup ( S ,  RR ,  `'  <  )  <  A ) )  ->  E. z  e.  S  z  <  A )
 
Theoremopnrebl 32315* A set is open in the standard topology of the reals precisely when every point can be enclosed in an open ball. (Contributed by Jeff Hankins, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
 |-  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  E. y  e.  RR+  ( ( x  -  y ) (,) ( x  +  y )
 )  C_  A )
 )
 
Theoremopnrebl2 32316* A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
 |-  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) ( x  +  z )
 )  C_  A )
 ) )
 
Theoremnn0prpwlem 32317* Lemma for nn0prpw 32318. Use strong induction to show that every positive integer has unique prime power divisors. (Contributed by Jeff Hankins, 28-Sep-2013.)
 |-  ( A  e.  NN  ->  A. k  e.  NN  (
 k  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
 ||  k  <->  ( p ^ n )  ||  A ) ) )
 
Theoremnn0prpw 32318* Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
 |-  (
 ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
 <->  ( p ^ n )  ||  B ) ) )
 
20.9.2  Basic topological facts
 
Theoremtopbnd 32319 Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X )  ->  ( ( ( cls `  J ) `  A )  i^i  ( ( cls `  J ) `  ( X  \  A ) ) )  =  ( ( ( cls `  J ) `  A )  \  ( ( int `  J ) `  A ) ) )
 
Theoremopnbnd 32320 A set is open iff it is disjoint from its boundary. (Contributed by Jeff Hankins, 23-Sep-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X )  ->  ( A  e.  J  <->  ( A  i^i  ( ( ( cls `  J ) `  A )  i^i  ( ( cls `  J ) `  ( X  \  A ) ) ) )  =  (/) ) )
 
Theoremcldbnd 32321 A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( ( ( cls `  J ) `  A )  i^i  (
 ( cls `  J ) `  ( X  \  A ) ) )  C_  A ) )
 
Theoremntruni 32322* A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  O  C_  ~P X )  ->  U_ o  e.  O  ( ( int `  J ) `  o )  C_  ( ( int `  J ) `  U. O ) )
 
Theoremclsun 32323 A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( ( cls `  J ) `  ( A  u.  B ) )  =  ( ( ( cls `  J ) `  A )  u.  ( ( cls `  J ) `  B ) ) )
 
Theoremclsint2 32324* The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  C  C_  ~P X )  ->  ( ( cls `  J ) `  |^| C )  C_  |^|_ c  e.  C  ( ( cls `  J ) `  c ) )
 
Theoremopnregcld 32325* A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X )  ->  ( ( ( cls `  J ) `  (
 ( int `  J ) `  A ) )  =  A  <->  E. o  e.  J  A  =  ( ( cls `  J ) `  o ) ) )
 
Theoremcldregopn 32326* A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  A  C_  X )  ->  ( ( ( int `  J ) `  (
 ( cls `  J ) `  A ) )  =  A  <->  E. c  e.  ( Clsd `  J ) A  =  ( ( int `  J ) `  c
 ) ) )
 
Theoremneiin 32327 Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  (
 ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J ) `  B ) ) 
 ->  ( M  i^i  N )  e.  ( ( nei `  J ) `  ( A  i^i  B ) ) )
 
Theoremhmeoclda 32328 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  (
 ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J Homeo K ) )  /\  S  e.  ( Clsd `  J ) )  ->  ( F " S )  e.  ( Clsd `  K ) )
 
Theoremhmeocldb 32329 Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009.)
 |-  (
 ( ( J  e.  Top  /\  K  e.  Top  /\  F  e.  ( J Homeo K ) )  /\  S  e.  ( Clsd `  K ) )  ->  ( `' F " S )  e.  ( Clsd `  J ) )
 
20.9.3  Topology of the real numbers
 
TheoremivthALT 32330* An alternate proof of the Intermediate Value Theorem ivth 23223 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  (
 ( ( A  e.  RR  /\  B  e.  RR  /\  U  e.  RR )  /\  A  <  B  /\  ( ( A [,] B )  C_  D  /\  D  C_  CC  /\  ( F  e.  ( D -cn->
 CC )  /\  ( F " ( A [,] B ) )  C_  RR  /\  U  e.  ( ( F `  A ) (,) ( F `  B ) ) ) ) )  ->  E. x  e.  ( A (,) B ) ( F `  x )  =  U )
 
20.9.4  Refinements
 
Syntaxcfne 32331 Extend class definition to include the "finer than" relation.
 class  Fne
 
Definitiondf-fne 32332* Define the fineness relation for covers. (Contributed by Jeff Hankins, 28-Sep-2009.)
 |-  Fne  =  { <. x ,  y >.  |  ( U. x  =  U. y  /\  A. z  e.  x  z  C_ 
 U. ( y  i^i 
 ~P z ) ) }
 
Theoremfnerel 32333 Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.)
 |-  Rel  Fne
 
Theoremisfne 32334* The predicate " B is finer than  A." This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( B  e.  C  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  x  C_ 
 U. ( B  i^i  ~P x ) ) ) )
 
Theoremisfne4 32335 The predicate " B is finer than  A " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( A Fne B  <->  ( X  =  Y  /\  A  C_  ( topGen `  B ) ) )
 
Theoremisfne4b 32336 A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( B  e.  V  ->  ( A Fne B  <->  ( X  =  Y  /\  ( topGen `  A )  C_  ( topGen `  B )
 ) ) )
 
Theoremisfne2 32337* The predicate " B is finer than  A." (Contributed by Jeff Hankins, 28-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( B  e.  C  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  A. y  e.  x  E. z  e.  B  (
 y  e.  z  /\  z  C_  x ) ) ) )
 
Theoremisfne3 32338* The predicate " B is finer than  A." (Contributed by Jeff Hankins, 11-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( B  e.  C  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  E. y ( y  C_  B  /\  x  =  U. y ) ) ) )
 
Theoremfnebas 32339 A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( A Fne B  ->  X  =  Y )
 
Theoremfnetg 32340 A finer cover generates a topology finer than the original set. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( A Fne B  ->  A  C_  ( topGen `  B )
 )
 
Theoremfnessex 32341* If  B is finer than  A and  S is an element of  A, every point in  S is an element of a subset of  S which is in  B. (Contributed by Jeff Hankins, 28-Sep-2009.)
 |-  (
 ( A Fne B  /\  S  e.  A  /\  P  e.  S )  ->  E. x  e.  B  ( P  e.  x  /\  x  C_  S ) )
 
Theoremfneuni 32342* If  B is finer than  A, every element of  A is a union of elements of  B. (Contributed by Jeff Hankins, 11-Oct-2009.)
 |-  (
 ( A Fne B  /\  S  e.  A ) 
 ->  E. x ( x 
 C_  B  /\  S  =  U. x ) )
 
Theoremfneint 32343* If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009.)
 |-  ( A Fne B  ->  |^| { x  e.  B  |  P  e.  x }  C_  |^| { x  e.  A  |  P  e.  x } )
 
Theoremfness 32344 A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y ) 
 ->  A Fne B )
 
Theoremfneref 32345 Reflexivity of the fineness relation. (Contributed by Jeff Hankins, 12-Oct-2009.)
 |-  ( A  e.  V  ->  A Fne A )
 
Theoremfnetr 32346 Transitivity of the fineness relation. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  (
 ( A Fne B  /\  B Fne C ) 
 ->  A Fne C )
 
Theoremfneval 32347 Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  .~  =  ( Fne  i^i  `' Fne )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .~  B 
 <->  ( topGen `  A )  =  ( topGen `  B )
 ) )
 
Theoremfneer 32348 Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  .~  =  ( Fne  i^i  `' Fne )   =>    |- 
 .~  Er  _V
 
Theoremtopfne 32349 Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( K  e.  Top  /\  X  =  Y ) 
 ->  ( J  C_  K  <->  J Fne K ) )
 
Theoremtopfneec 32350 A cover is equivalent to a topology iff it is a base for that topology. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  .~  =  ( Fne  i^i  `' Fne )   =>    |-  ( J  e.  Top  ->  ( A  e.  [ J ]  .~  <->  ( topGen `  A )  =  J )
 )
 
Theoremtopfneec2 32351 A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
 |-  .~  =  ( Fne  i^i  `' Fne )   =>    |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( [ J ]  .~  =  [ K ]  .~  <->  J  =  K ) )
 
Theoremfnessref 32352* A cover is finer iff it has a subcover which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( X  =  Y  ->  ( A Fne B  <->  E. c ( c  C_  B  /\  ( A Fne c  /\  c Ref A ) ) ) )
 
Theoremrefssfne 32353* A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
 |-  X  =  U. A   &    |-  Y  =  U. B   =>    |-  ( X  =  Y  ->  ( B Ref A  <->  E. c ( B  C_  c  /\  ( A Fne c  /\  c Ref A ) ) ) )
 
20.9.5  Neighborhood bases determine topologies
 
Theoremneibastop1 32354* A collection of neighborhood bases determines a topology. Part of Theorem 4.5 of Stephen Willard's General Topology. (Contributed by Jeff Hankins, 8-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/) } )
 )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x )  /\  w  e.  ( F `  x ) ) )  ->  ( ( F `  x )  i^i  ~P (
 v  i^i  w )
 )  =/=  (/) )   &    |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `
  x )  i^i 
 ~P o )  =/=  (/) }   =>    |-  ( ph  ->  J  e.  (TopOn `  X )
 )
 
Theoremneibastop2lem 32355* Lemma for neibastop2 32356. (Contributed by Jeff Hankins, 12-Sep-2009.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/) } )
 )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x )  /\  w  e.  ( F `  x ) ) )  ->  ( ( F `  x )  i^i  ~P (
 v  i^i  w )
 )  =/=  (/) )   &    |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `
  x )  i^i 
 ~P o )  =/=  (/) }   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  x  e.  v )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t  ( ( F `  y )  i^i  ~P v
 )  =/=  (/) )   &    |-  ( ph  ->  P  e.  X )   &    |-  ( ph  ->  N  C_  X )   &    |-  ( ph  ->  U  e.  ( F `  P ) )   &    |-  ( ph  ->  U  C_  N )   &    |-  G  =  ( rec ( ( a  e. 
 _V  |->  U_ z  e.  a  U_ x  e.  X  ( ( F `  x )  i^i  ~P z ) ) ,  { U } )  |`  om )   &    |-  S  =  { y  e.  X  |  E. f  e.  U. ran  G ( ( F `
  y )  i^i 
 ~P f )  =/=  (/) }   =>    |-  ( ph  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  N ) )
 
Theoremneibastop2 32356* In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/) } )
 )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x )  /\  w  e.  ( F `  x ) ) )  ->  ( ( F `  x )  i^i  ~P (
 v  i^i  w )
 )  =/=  (/) )   &    |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `
  x )  i^i 
 ~P o )  =/=  (/) }   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  x  e.  v )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t  ( ( F `  y )  i^i  ~P v
 )  =/=  (/) )   =>    |-  ( ( ph  /\  P  e.  X ) 
 ->  ( N  e.  (
 ( nei `  J ) `  { P } )  <->  ( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) ) ) )
 
Theoremneibastop3 32357* The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/) } )
 )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x )  /\  w  e.  ( F `  x ) ) )  ->  ( ( F `  x )  i^i  ~P (
 v  i^i  w )
 )  =/=  (/) )   &    |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `
  x )  i^i 
 ~P o )  =/=  (/) }   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  x  e.  v )   &    |-  ( ( ph  /\  ( x  e.  X  /\  v  e.  ( F `  x ) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t  ( ( F `  y )  i^i  ~P v
 )  =/=  (/) )   =>    |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) } )
 
20.9.6  Lattice structure of topologies
 
Theoremtopmtcl 32358 The meet of a collection of topologies on  X is again a topology on  X. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  S  C_  (TopOn `  X ) )  ->  ( ~P X  i^i  |^| S )  e.  (TopOn `  X ) )
 
Theoremtopmeet 32359* Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  S  C_  (TopOn `  X ) )  ->  ( ~P X  i^i  |^| S )  =  U. { k  e.  (TopOn `  X )  |  A. j  e.  S  k  C_  j } )
 
Theoremtopjoin 32360* Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  S  C_  (TopOn `  X ) )  ->  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  = 
 |^| { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k } )
 
Theoremfnemeet1 32361* The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  ( ~P X  i^i  |^|_
 t  e.  S  (
 topGen `  t ) ) Fne A )
 
Theoremfnemeet2 32362* The meet of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  A. y  e.  S  X  =  U. y ) 
 ->  ( T Fne ( ~P X  i^i  |^|_ t  e.  S  ( topGen `  t
 ) )  <->  ( X  =  U. T  /\  A. x  e.  S  T Fne x ) ) )
 
Theoremfnejoin1 32363* Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  A  e.  S )  ->  A Fne if ( S  =  (/) ,  { X } ,  U. S ) )
 
Theoremfnejoin2 32364* Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  (
 ( X  e.  V  /\  A. y  e.  S  X  =  U. y ) 
 ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
 
20.9.7  Filter bases
 
Theoremfgmin 32365 Minimality property of a generated filter: every filter that contains  B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
 |-  (
 ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X ) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F )
 )
 
Theoremneifg 32366* The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 21646. (Contributed by Jeff Hankins, 3-Sep-2009.)
 |-  X  =  U. J   =>    |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  ( ( nei `  J ) `  S ) )
 
20.9.8  Directed sets, nets
 
Theoremtailfval 32367* The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  X  =  dom  D   =>    |-  ( D  e.  DirRel  ->  ( tail `  D )  =  ( x  e.  X  |->  ( D " { x } ) ) )
 
Theoremtailval 32368 The tail of an element in a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  X  =  dom  D   =>    |-  ( ( D  e.  DirRel  /\  A  e.  X ) 
 ->  ( ( tail `  D ) `  A )  =  ( D " { A } ) )
 
Theoremeltail 32369 An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  X  =  dom  D   =>    |-  ( ( D  e.  DirRel  /\  A  e.  X  /\  B  e.  C )  ->  ( B  e.  (
 ( tail `  D ) `  A )  <->  A D B ) )
 
Theoremtailf 32370 The tail function of a directed set sends its elements to its subsets. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  X  =  dom  D   =>    |-  ( D  e.  DirRel  ->  ( tail `  D ) : X --> ~P X )
 
Theoremtailini 32371 A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
 |-  X  =  dom  D   =>    |-  ( ( D  e.  DirRel  /\  A  e.  X ) 
 ->  A  e.  ( (
 tail `  D ) `  A ) )
 
Theoremtailfb 32372 The collection of tails of a directed set is a filter base. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  X  =  dom  D   =>    |-  ( ( D  e.  DirRel  /\  X  =/=  (/) )  ->  ran  ( tail `  D )  e.  ( fBas `  X )
 )
 
Theoremfilnetlem1 32373* Lemma for filnet 32377. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  H  =  U_ n  e.  F  ( { n }  X.  n )   &    |-  D  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  ( 1st `  y )  C_  ( 1st `  x )
 ) }   &    |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A D B  <->  ( ( A  e.  H  /\  B  e.  H ) 
 /\  ( 1st `  B )  C_  ( 1st `  A ) ) )
 
Theoremfilnetlem2 32374* Lemma for filnet 32377. The field of the direction. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  H  =  U_ n  e.  F  ( { n }  X.  n )   &    |-  D  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  ( 1st `  y )  C_  ( 1st `  x )
 ) }   =>    |-  ( (  _I  |`  H ) 
 C_  D  /\  D  C_  ( H  X.  H ) )
 
Theoremfilnetlem3 32375* Lemma for filnet 32377. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  H  =  U_ n  e.  F  ( { n }  X.  n )   &    |-  D  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  ( 1st `  y )  C_  ( 1st `  x )
 ) }   =>    |-  ( H  =  U. U. D  /\  ( F  e.  ( Fil `  X )  ->  ( H  C_  ( F  X.  X ) 
 /\  D  e.  DirRel ) ) )
 
Theoremfilnetlem4 32376* Lemma for filnet 32377. (Contributed by Jeff Hankins, 15-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  H  =  U_ n  e.  F  ( { n }  X.  n )   &    |-  D  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  ( 1st `  y )  C_  ( 1st `  x )
 ) }   =>    |-  ( F  e.  ( Fil `  X )  ->  E. d  e.  DirRel  E. f
 ( f : dom  d
 --> X  /\  F  =  ( ( X  FilMap  f ) `  ran  ( tail `  d ) ) ) )
 
Theoremfilnet 32377* A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
 |-  ( F  e.  ( Fil `  X )  ->  E. d  e.  DirRel  E. f ( f : dom  d --> X  /\  F  =  ( ( X  FilMap  f ) `  ran  ( tail `  d )
 ) ) )
 
20.10  Mathbox for Anthony Hart
 
20.10.1  Propositional Calculus
 
Theoremtb-ax1 32378 The first of three axioms in the Tarski-Bernays axiom system. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  ->  ps )  ->  ( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
 
Theoremtb-ax2 32379 The second of three axioms in the Tarski-Bernays axiom system. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ph ) )
 
Theoremtb-ax3 32380 The third of three axioms in the Tarski-Bernays axiom system.

This axiom, along with ax-mp 5, tb-ax1 32378, and tb-ax2 32379, can be used to derive any theorem or rule that uses only  ->. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

 |-  (
 ( ( ph  ->  ps )  ->  ph )  ->  ph )
 
Theoremtbsyl 32381 The weak syllogism from Tarski-Bernays'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ps )   &    |-  ( ps  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremre1ax2lem 32382 Lemma for re1ax2 32383. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  ->  ( ps 
 ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )
 
Theoremre1ax2 32383 ax-2 7 rederived from the Tarski-Bernays axiom system. Often tb-ax1 32378 is replaced with this theorem to make a "standard" system. This is because this theorem is easier to work with, despite it being longer. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  ->  ( ps 
 ->  ch ) )  ->  ( ( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
 
Theoremnaim1 32384 Constructor theorem for  -/\. (Contributed by Anthony Hart, 1-Sep-2011.)
 |-  (
 ( ph  ->  ps )  ->  ( ( ps  -/\  ch )  ->  ( ph  -/\  ch )
 ) )
 
Theoremnaim2 32385 Constructor theorem for  -/\. (Contributed by Anthony Hart, 1-Sep-2011.)
 |-  (
 ( ph  ->  ps )  ->  ( ( ch  -/\  ps )  ->  ( ch  -/\  ph )
 ) )
 
Theoremnaim1i 32386 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ps  -/\  ch )   =>    |-  ( ph  -/\  ch )
 
Theoremnaim2i 32387 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ch  -/\  ps )   =>    |-  ( ch  -/\  ph )
 
Theoremnaim12i 32388 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ps  -/\  th )   =>    |-  ( ph  -/\  ch )
 
Theoremnabi1 32389 Constructor theorem for  -/\. (Contributed by Anthony Hart, 1-Sep-2011.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ph  -/\  ch )  <->  ( ps  -/\  ch )
 ) )
 
Theoremnabi2 32390 Constructor theorem for  -/\. (Contributed by Anthony Hart, 1-Sep-2011.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ch  -/\  ph )  <->  ( ch  -/\  ps )
 ) )
 
Theoremnabi1i 32391 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph 
 <->  ps )   &    |-  ( ps  -/\  ch )   =>    |-  ( ph  -/\  ch )
 
Theoremnabi2i 32392 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph 
 <->  ps )   &    |-  ( ch  -/\  ps )   =>    |-  ( ch  -/\  ph )
 
Theoremnabi12i 32393 Constructor rule for  -/\. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  ( ph 
 <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ps  -/\  th )   =>    |-  ( ph  -/\  ch )
 
Syntaxw3nand 32394 The double nand.
 wff  ( ph  -/\  ps  -/\  ch )
 
Definitiondf-3nand 32395 The double nand. This definition allows us to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  (
 ( ph  -/\  ps  -/\  ch )  <->  (
 ph  ->  ( ps  ->  -. 
 ch ) ) )
 
Theoremdf3nandALT1 32396 The double nand expressed in terms of pure nand. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  (
 ( ph  -/\  ps  -/\  ch )  <->  (
 ph  -/\  ( ( ps  -/\  ch )  -/\  ( ps  -/\  ch ) ) ) )
 
Theoremdf3nandALT2 32397 The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  (
 ( ph  -/\  ps  -/\  ch )  <->  -.  ( ph  /\  ps  /\ 
 ch ) )
 
Theoremandnand1 32398 Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  (
 ( ph  /\  ps  /\  ch )  <->  ( ( ph  -/\ 
 ps  -/\  ch )  -/\  ( ph  -/\  ps  -/\  ch )
 ) )
 
Theoremimnand2 32399 An  -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011.)
 |-  (
 ( -.  ph  ->  ps )  <->  ( ( ph  -/\  ph )  -/\  ( ps  -/\  ps ) ) )
 
20.10.2  Predicate Calculus
 
Theoremallt 32400 For all sets, T. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  A. x T.
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >