Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem1 Structured version   Visualization version   Unicode version

Theorem filnetlem1 32373
Description: Lemma for filnet 32377. Change variables. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h  |-  H  = 
U_ n  e.  F  ( { n }  X.  n )
filnet.d  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
filnetlem1.a  |-  A  e. 
_V
filnetlem1.b  |-  B  e. 
_V
Assertion
Ref Expression
filnetlem1  |-  ( A D B  <->  ( ( A  e.  H  /\  B  e.  H )  /\  ( 1st `  B
)  C_  ( 1st `  A ) ) )
Distinct variable groups:    x, y, A    x, n, y, F   
x, H, y    x, B, y
Allowed substitution hints:    A( n)    B( n)    D( x, y, n)    H( n)

Proof of Theorem filnetlem1
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
21sseq2d 3633 . . 3  |-  ( x  =  A  ->  (
( 1st `  y
)  C_  ( 1st `  x )  <->  ( 1st `  y )  C_  ( 1st `  A ) ) )
3 fveq2 6191 . . . 4  |-  ( y  =  B  ->  ( 1st `  y )  =  ( 1st `  B
) )
43sseq1d 3632 . . 3  |-  ( y  =  B  ->  (
( 1st `  y
)  C_  ( 1st `  A )  <->  ( 1st `  B )  C_  ( 1st `  A ) ) )
52, 4sylan9bb 736 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( 1st `  y
)  C_  ( 1st `  x )  <->  ( 1st `  B )  C_  ( 1st `  A ) ) )
6 filnet.d . 2  |-  D  =  { <. x ,  y
>.  |  ( (
x  e.  H  /\  y  e.  H )  /\  ( 1st `  y
)  C_  ( 1st `  x ) ) }
75, 6brab2a 5194 1  |-  ( A D B  <->  ( ( A  e.  H  /\  B  e.  H )  /\  ( 1st `  B
)  C_  ( 1st `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   U_ciun 4520   class class class wbr 4653   {copab 4712    X. cxp 5112   ` cfv 5888   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896
This theorem is referenced by:  filnetlem2  32374  filnetlem3  32375  filnetlem4  32376
  Copyright terms: Public domain W3C validator