MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneqeql2 Structured version   Visualization version   Unicode version

Theorem fneqeql2 6326
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 6325 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  dom  ( F  i^i  G
)  =  A ) )
2 inss1 3833 . . . . . 6  |-  ( F  i^i  G )  C_  F
3 dmss 5323 . . . . . 6  |-  ( ( F  i^i  G ) 
C_  F  ->  dom  ( F  i^i  G ) 
C_  dom  F )
42, 3ax-mp 5 . . . . 5  |-  dom  ( F  i^i  G )  C_  dom  F
5 fndm 5990 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
65adantr 481 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
74, 6syl5sseq 3653 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  C_  A )
87biantrurd 529 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  C_  dom  ( F  i^i  G )  <-> 
( dom  ( F  i^i  G )  C_  A  /\  A  C_  dom  ( F  i^i  G ) ) ) )
9 eqss 3618 . . 3  |-  ( dom  ( F  i^i  G
)  =  A  <->  ( dom  ( F  i^i  G ) 
C_  A  /\  A  C_ 
dom  ( F  i^i  G ) ) )
108, 9syl6rbbr 279 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  ( F  i^i  G )  =  A  <->  A  C_  dom  ( F  i^i  G ) ) )
111, 10bitrd 268 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
A  C_  dom  ( F  i^i  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   dom cdm 5114    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  evlseu  19516  hauseqcn  29941
  Copyright terms: Public domain W3C validator