| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hauseqcn | Structured version Visualization version Unicode version | ||
| Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.) |
| Ref | Expression |
|---|---|
| hauseqcn.x |
|
| hauseqcn.k |
|
| hauseqcn.f |
|
| hauseqcn.g |
|
| hauseqcn.e |
|
| hauseqcn.a |
|
| hauseqcn.c |
|
| Ref | Expression |
|---|---|
| hauseqcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauseqcn.x |
. . 3
| |
| 2 | hauseqcn.f |
. . . . . 6
| |
| 3 | cntop1 21044 |
. . . . . 6
| |
| 4 | 2, 3 | syl 17 |
. . . . 5
|
| 5 | dmin 5332 |
. . . . . 6
| |
| 6 | eqid 2622 |
. . . . . . . . . 10
| |
| 7 | eqid 2622 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | cnf 21050 |
. . . . . . . . 9
|
| 9 | fdm 6051 |
. . . . . . . . 9
| |
| 10 | 2, 8, 9 | 3syl 18 |
. . . . . . . 8
|
| 11 | hauseqcn.g |
. . . . . . . . 9
| |
| 12 | 6, 7 | cnf 21050 |
. . . . . . . . 9
|
| 13 | fdm 6051 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | 3syl 18 |
. . . . . . . 8
|
| 15 | 10, 14 | ineq12d 3815 |
. . . . . . 7
|
| 16 | inidm 3822 |
. . . . . . 7
| |
| 17 | 15, 16 | syl6eq 2672 |
. . . . . 6
|
| 18 | 5, 17 | syl5sseq 3653 |
. . . . 5
|
| 19 | hauseqcn.e |
. . . . . 6
| |
| 20 | ffn 6045 |
. . . . . . . 8
| |
| 21 | 2, 8, 20 | 3syl 18 |
. . . . . . 7
|
| 22 | ffn 6045 |
. . . . . . . 8
| |
| 23 | 11, 12, 22 | 3syl 18 |
. . . . . . 7
|
| 24 | hauseqcn.a |
. . . . . . . 8
| |
| 25 | 24, 1 | syl6sseq 3651 |
. . . . . . 7
|
| 26 | fnreseql 6327 |
. . . . . . 7
| |
| 27 | 21, 23, 25, 26 | syl3anc 1326 |
. . . . . 6
|
| 28 | 19, 27 | mpbid 222 |
. . . . 5
|
| 29 | 6 | clsss 20858 |
. . . . 5
|
| 30 | 4, 18, 28, 29 | syl3anc 1326 |
. . . 4
|
| 31 | hauseqcn.c |
. . . 4
| |
| 32 | hauseqcn.k |
. . . . . 6
| |
| 33 | 32, 2, 11 | hauseqlcld 21449 |
. . . . 5
|
| 34 | cldcls 20846 |
. . . . 5
| |
| 35 | 33, 34 | syl 17 |
. . . 4
|
| 36 | 30, 31, 35 | 3sstr3d 3647 |
. . 3
|
| 37 | 1, 36 | syl5eqssr 3650 |
. 2
|
| 38 | fneqeql2 6326 |
. . 3
| |
| 39 | 21, 23, 38 | syl2anc 693 |
. 2
|
| 40 | 37, 39 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-cls 20825 df-cn 21031 df-haus 21119 df-tx 21365 |
| This theorem is referenced by: rrhre 30065 |
| Copyright terms: Public domain | W3C validator |