Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hauseqcn Structured version   Visualization version   Unicode version

Theorem hauseqcn 29941
Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.)
Hypotheses
Ref Expression
hauseqcn.x  |-  X  = 
U. J
hauseqcn.k  |-  ( ph  ->  K  e.  Haus )
hauseqcn.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
hauseqcn.g  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
hauseqcn.e  |-  ( ph  ->  ( F  |`  A )  =  ( G  |`  A ) )
hauseqcn.a  |-  ( ph  ->  A  C_  X )
hauseqcn.c  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  X )
Assertion
Ref Expression
hauseqcn  |-  ( ph  ->  F  =  G )

Proof of Theorem hauseqcn
StepHypRef Expression
1 hauseqcn.x . . 3  |-  X  = 
U. J
2 hauseqcn.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3 cntop1 21044 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
42, 3syl 17 . . . . 5  |-  ( ph  ->  J  e.  Top )
5 dmin 5332 . . . . . 6  |-  dom  ( F  i^i  G )  C_  ( dom  F  i^i  dom  G )
6 eqid 2622 . . . . . . . . . 10  |-  U. J  =  U. J
7 eqid 2622 . . . . . . . . . 10  |-  U. K  =  U. K
86, 7cnf 21050 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
9 fdm 6051 . . . . . . . . 9  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
102, 8, 93syl 18 . . . . . . . 8  |-  ( ph  ->  dom  F  =  U. J )
11 hauseqcn.g . . . . . . . . 9  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
126, 7cnf 21050 . . . . . . . . 9  |-  ( G  e.  ( J  Cn  K )  ->  G : U. J --> U. K
)
13 fdm 6051 . . . . . . . . 9  |-  ( G : U. J --> U. K  ->  dom  G  =  U. J )
1411, 12, 133syl 18 . . . . . . . 8  |-  ( ph  ->  dom  G  =  U. J )
1510, 14ineq12d 3815 . . . . . . 7  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( U. J  i^i  U. J ) )
16 inidm 3822 . . . . . . 7  |-  ( U. J  i^i  U. J )  =  U. J
1715, 16syl6eq 2672 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  U. J )
185, 17syl5sseq 3653 . . . . 5  |-  ( ph  ->  dom  ( F  i^i  G )  C_  U. J )
19 hauseqcn.e . . . . . 6  |-  ( ph  ->  ( F  |`  A )  =  ( G  |`  A ) )
20 ffn 6045 . . . . . . . 8  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
212, 8, 203syl 18 . . . . . . 7  |-  ( ph  ->  F  Fn  U. J
)
22 ffn 6045 . . . . . . . 8  |-  ( G : U. J --> U. K  ->  G  Fn  U. J
)
2311, 12, 223syl 18 . . . . . . 7  |-  ( ph  ->  G  Fn  U. J
)
24 hauseqcn.a . . . . . . . 8  |-  ( ph  ->  A  C_  X )
2524, 1syl6sseq 3651 . . . . . . 7  |-  ( ph  ->  A  C_  U. J )
26 fnreseql 6327 . . . . . . 7  |-  ( ( F  Fn  U. J  /\  G  Fn  U. J  /\  A  C_  U. J
)  ->  ( ( F  |`  A )  =  ( G  |`  A )  <-> 
A  C_  dom  ( F  i^i  G ) ) )
2721, 23, 25, 26syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( F  |`  A )  =  ( G  |`  A )  <->  A 
C_  dom  ( F  i^i  G ) ) )
2819, 27mpbid 222 . . . . 5  |-  ( ph  ->  A  C_  dom  ( F  i^i  G ) )
296clsss 20858 . . . . 5  |-  ( ( J  e.  Top  /\  dom  ( F  i^i  G
)  C_  U. J  /\  A  C_  dom  ( F  i^i  G ) )  ->  ( ( cls `  J ) `  A
)  C_  ( ( cls `  J ) `  dom  ( F  i^i  G
) ) )
304, 18, 28, 29syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( cls `  J
) `  A )  C_  ( ( cls `  J
) `  dom  ( F  i^i  G ) ) )
31 hauseqcn.c . . . 4  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  X )
32 hauseqcn.k . . . . . 6  |-  ( ph  ->  K  e.  Haus )
3332, 2, 11hauseqlcld 21449 . . . . 5  |-  ( ph  ->  dom  ( F  i^i  G )  e.  ( Clsd `  J ) )
34 cldcls 20846 . . . . 5  |-  ( dom  ( F  i^i  G
)  e.  ( Clsd `  J )  ->  (
( cls `  J
) `  dom  ( F  i^i  G ) )  =  dom  ( F  i^i  G ) )
3533, 34syl 17 . . . 4  |-  ( ph  ->  ( ( cls `  J
) `  dom  ( F  i^i  G ) )  =  dom  ( F  i^i  G ) )
3630, 31, 353sstr3d 3647 . . 3  |-  ( ph  ->  X  C_  dom  ( F  i^i  G ) )
371, 36syl5eqssr 3650 . 2  |-  ( ph  ->  U. J  C_  dom  ( F  i^i  G ) )
38 fneqeql2 6326 . . 3  |-  ( ( F  Fn  U. J  /\  G  Fn  U. J
)  ->  ( F  =  G  <->  U. J  C_  dom  ( F  i^i  G ) ) )
3921, 23, 38syl2anc 693 . 2  |-  ( ph  ->  ( F  =  G  <->  U. J  C_  dom  ( F  i^i  G ) ) )
4037, 39mpbird 247 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   U.cuni 4436   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698   Clsdccld 20820   clsccl 20822    Cn ccn 21028   Hauscha 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-haus 21119  df-tx 21365
This theorem is referenced by:  rrhre  30065
  Copyright terms: Public domain W3C validator