Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnresfnco Structured version   Visualization version   Unicode version

Theorem fnresfnco 41206
Description: Composition of two functions, similar to fnco 5999. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
fnresfnco  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ( F  o.  G )  Fn  B
)

Proof of Theorem fnresfnco
StepHypRef Expression
1 fnfun 5988 . . 3  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  Fun  ( F  |`  ran  G
) )
2 fnfun 5988 . . 3  |-  ( G  Fn  B  ->  Fun  G )
3 funresfunco 41205 . . 3  |-  ( ( Fun  ( F  |`  ran  G )  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
41, 2, 3syl2an 494 . 2  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  Fun  ( F  o.  G ) )
5 fndm 5990 . . . . . 6  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  dom  ( F  |`  ran  G
)  =  ran  G
)
6 dmres 5419 . . . . . . . 8  |-  dom  ( F  |`  ran  G )  =  ( ran  G  i^i  dom  F )
76eqeq1i 2627 . . . . . . 7  |-  ( dom  ( F  |`  ran  G
)  =  ran  G  <->  ( ran  G  i^i  dom  F )  =  ran  G
)
8 df-ss 3588 . . . . . . 7  |-  ( ran 
G  C_  dom  F  <->  ( ran  G  i^i  dom  F )  =  ran  G )
97, 8sylbb2 228 . . . . . 6  |-  ( dom  ( F  |`  ran  G
)  =  ran  G  ->  ran  G  C_  dom  F )
105, 9syl 17 . . . . 5  |-  ( ( F  |`  ran  G )  Fn  ran  G  ->  ran  G  C_  dom  F )
1110adantr 481 . . . 4  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ran  G  C_  dom  F )
12 dmcosseq 5387 . . . 4  |-  ( ran 
G  C_  dom  F  ->  dom  ( F  o.  G
)  =  dom  G
)
1311, 12syl 17 . . 3  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  ( F  o.  G )  =  dom  G )
14 fndm 5990 . . . 4  |-  ( G  Fn  B  ->  dom  G  =  B )
1514adantl 482 . . 3  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  G  =  B )
1613, 15eqtrd 2656 . 2  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  dom  ( F  o.  G )  =  B )
17 df-fn 5891 . 2  |-  ( ( F  o.  G )  Fn  B  <->  ( Fun  ( F  o.  G
)  /\  dom  ( F  o.  G )  =  B ) )
184, 16, 17sylanbrc 698 1  |-  ( ( ( F  |`  ran  G
)  Fn  ran  G  /\  G  Fn  B
)  ->  ( F  o.  G )  Fn  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Fun wfun 5882    Fn wfn 5883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-fun 5890  df-fn 5891
This theorem is referenced by:  funcoressn  41207
  Copyright terms: Public domain W3C validator