MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcosseq Structured version   Visualization version   Unicode version

Theorem dmcosseq 5387
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)

Proof of Theorem dmcosseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 5385 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
21a1i 11 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  C_  dom  B )
3 ssel 3597 . . . . . . . 8  |-  ( ran 
B  C_  dom  A  -> 
( y  e.  ran  B  ->  y  e.  dom  A ) )
4 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
54elrn 5366 . . . . . . . . . 10  |-  ( y  e.  ran  B  <->  E. x  x B y )
64eldm 5321 . . . . . . . . . 10  |-  ( y  e.  dom  A  <->  E. z 
y A z )
75, 6imbi12i 340 . . . . . . . . 9  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  <->  ( E. x  x B y  ->  E. z 
y A z ) )
8 19.8a 2052 . . . . . . . . . . 11  |-  ( x B y  ->  E. x  x B y )
98imim1i 63 . . . . . . . . . 10  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z 
y A z ) )
10 pm3.2 463 . . . . . . . . . . 11  |-  ( x B y  ->  (
y A z  -> 
( x B y  /\  y A z ) ) )
1110eximdv 1846 . . . . . . . . . 10  |-  ( x B y  ->  ( E. z  y A
z  ->  E. z
( x B y  /\  y A z ) ) )
129, 11sylcom 30 . . . . . . . . 9  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
137, 12sylbi 207 . . . . . . . 8  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
143, 13syl 17 . . . . . . 7  |-  ( ran 
B  C_  dom  A  -> 
( x B y  ->  E. z ( x B y  /\  y A z ) ) )
1514eximdv 1846 . . . . . 6  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. y E. z ( x B y  /\  y A z ) ) )
16 excom 2042 . . . . . 6  |-  ( E. z E. y ( x B y  /\  y A z )  <->  E. y E. z ( x B y  /\  y A z ) )
1715, 16syl6ibr 242 . . . . 5  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z E. y ( x B y  /\  y A z ) ) )
18 vex 3203 . . . . . . 7  |-  x  e. 
_V
19 vex 3203 . . . . . . 7  |-  z  e. 
_V
2018, 19opelco 5293 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( A  o.  B
)  <->  E. y ( x B y  /\  y A z ) )
2120exbii 1774 . . . . 5  |-  ( E. z <. x ,  z
>.  e.  ( A  o.  B )  <->  E. z E. y ( x B y  /\  y A z ) )
2217, 21syl6ibr 242 . . . 4  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z <. x ,  z >.  e.  ( A  o.  B
) ) )
2318eldm 5321 . . . 4  |-  ( x  e.  dom  B  <->  E. y  x B y )
2418eldm2 5322 . . . 4  |-  ( x  e.  dom  ( A  o.  B )  <->  E. z <. x ,  z >.  e.  ( A  o.  B
) )
2522, 23, 243imtr4g 285 . . 3  |-  ( ran 
B  C_  dom  A  -> 
( x  e.  dom  B  ->  x  e.  dom  ( A  o.  B
) ) )
2625ssrdv 3609 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  B  C_  dom  ( A  o.  B ) )
272, 26eqssd 3620 1  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125
This theorem is referenced by:  dmcoeq  5388  fnco  5999  comptiunov2i  37998  dvsinax  40127  hoicvr  40762  fnresfnco  41206
  Copyright terms: Public domain W3C validator