| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmcosseq | Structured version Visualization version Unicode version | ||
| Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcosseq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss 5385 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | ssel 3597 |
. . . . . . . 8
| |
| 4 | vex 3203 |
. . . . . . . . . . 11
| |
| 5 | 4 | elrn 5366 |
. . . . . . . . . 10
|
| 6 | 4 | eldm 5321 |
. . . . . . . . . 10
|
| 7 | 5, 6 | imbi12i 340 |
. . . . . . . . 9
|
| 8 | 19.8a 2052 |
. . . . . . . . . . 11
| |
| 9 | 8 | imim1i 63 |
. . . . . . . . . 10
|
| 10 | pm3.2 463 |
. . . . . . . . . . 11
| |
| 11 | 10 | eximdv 1846 |
. . . . . . . . . 10
|
| 12 | 9, 11 | sylcom 30 |
. . . . . . . . 9
|
| 13 | 7, 12 | sylbi 207 |
. . . . . . . 8
|
| 14 | 3, 13 | syl 17 |
. . . . . . 7
|
| 15 | 14 | eximdv 1846 |
. . . . . 6
|
| 16 | excom 2042 |
. . . . . 6
| |
| 17 | 15, 16 | syl6ibr 242 |
. . . . 5
|
| 18 | vex 3203 |
. . . . . . 7
| |
| 19 | vex 3203 |
. . . . . . 7
| |
| 20 | 18, 19 | opelco 5293 |
. . . . . 6
|
| 21 | 20 | exbii 1774 |
. . . . 5
|
| 22 | 17, 21 | syl6ibr 242 |
. . . 4
|
| 23 | 18 | eldm 5321 |
. . . 4
|
| 24 | 18 | eldm2 5322 |
. . . 4
|
| 25 | 22, 23, 24 | 3imtr4g 285 |
. . 3
|
| 26 | 25 | ssrdv 3609 |
. 2
|
| 27 | 2, 26 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: dmcoeq 5388 fnco 5999 comptiunov2i 37998 dvsinax 40127 hoicvr 40762 fnresfnco 41206 |
| Copyright terms: Public domain | W3C validator |