Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcoressn Structured version   Visualization version   Unicode version

Theorem funcoressn 41207
Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.)
Assertion
Ref Expression
funcoressn  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )

Proof of Theorem funcoressn
StepHypRef Expression
1 dmressnsn 5438 . . . . . . . 8  |-  ( ( G `  X )  e.  dom  F  ->  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } )
2 df-fn 5891 . . . . . . . . 9  |-  ( ( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) }  <->  ( Fun  ( F  |`  { ( G `  X ) } )  /\  dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) } ) )
32simplbi2com 657 . . . . . . . 8  |-  ( dom  ( F  |`  { ( G `  X ) } )  =  {
( G `  X
) }  ->  ( Fun  ( F  |`  { ( G `  X ) } )  ->  ( F  |`  { ( G `
 X ) } )  Fn  { ( G `  X ) } ) )
41, 3syl 17 . . . . . . 7  |-  ( ( G `  X )  e.  dom  F  -> 
( Fun  ( F  |` 
{ ( G `  X ) } )  ->  ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) } ) )
54imp 445 . . . . . 6  |-  ( ( ( G `  X
)  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  ->  ( F  |` 
{ ( G `  X ) } )  Fn  { ( G `
 X ) } )
65adantr 481 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  Fn  {
( G `  X
) } )
7 fnsnfv 6258 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  { ( G `  X ) }  =  ( G " { X } ) )
87adantl 482 . . . . . . . 8  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ( G " { X } ) )
9 df-ima 5127 . . . . . . . 8  |-  ( G
" { X }
)  =  ran  ( G  |`  { X }
)
108, 9syl6eq 2672 . . . . . . 7  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  { ( G `  X ) }  =  ran  ( G  |`  { X } ) )
1110reseq2d 5396 . . . . . 6  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  { ( G `  X ) } )  =  ( F  |`  ran  ( G  |`  { X } ) ) )
1211, 10fneq12d 5983 . . . . 5  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( ( F  |`  { ( G `  X ) } )  Fn  { ( G `
 X ) }  <-> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) ) )
136, 12mpbid 222 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } ) )
14 fnfun 5988 . . . . . . 7  |-  ( G  Fn  A  ->  Fun  G )
15 funres 5929 . . . . . . . 8  |-  ( Fun 
G  ->  Fun  ( G  |`  { X } ) )
16 funfn 5918 . . . . . . . 8  |-  ( Fun  ( G  |`  { X } )  <->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1715, 16sylib 208 . . . . . . 7  |-  ( Fun 
G  ->  ( G  |` 
{ X } )  Fn  dom  ( G  |`  { X } ) )
1814, 17syl 17 . . . . . 6  |-  ( G  Fn  A  ->  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )
1918adantr 481 . . . . 5  |-  ( ( G  Fn  A  /\  X  e.  A )  ->  ( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
2019adantl 482 . . . 4  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( G  |`  { X } )  Fn  dom  ( G  |`  { X } ) )
21 fnresfnco 41206 . . . 4  |-  ( ( ( F  |`  ran  ( G  |`  { X }
) )  Fn  ran  ( G  |`  { X } )  /\  ( G  |`  { X }
)  Fn  dom  ( G  |`  { X }
) )  ->  ( F  o.  ( G  |` 
{ X } ) )  Fn  dom  ( G  |`  { X }
) )
2213, 20, 21syl2anc 693 . . 3  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  -> 
( F  o.  ( G  |`  { X }
) )  Fn  dom  ( G  |`  { X } ) )
23 fnfun 5988 . . 3  |-  ( ( F  o.  ( G  |`  { X } ) )  Fn  dom  ( G  |`  { X }
)  ->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2422, 23syl 17 . 2  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( F  o.  ( G  |`  { X }
) ) )
25 resco 5639 . . 3  |-  ( ( F  o.  G )  |`  { X } )  =  ( F  o.  ( G  |`  { X } ) )
2625funeqi 5909 . 2  |-  ( Fun  ( ( F  o.  G )  |`  { X } )  <->  Fun  ( F  o.  ( G  |`  { X } ) ) )
2724, 26sylibr 224 1  |-  ( ( ( ( G `  X )  e.  dom  F  /\  Fun  ( F  |`  { ( G `  X ) } ) )  /\  ( G  Fn  A  /\  X  e.  A ) )  ->  Fun  ( ( F  o.  G )  |`  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {csn 4177   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  afvco2  41256
  Copyright terms: Public domain W3C validator