![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2l | Structured version Visualization version Unicode version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ad2ant2l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantrl 752 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | adantll 750 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: funcnvqp 5952 mpteqb 6299 mpt2fun 6762 soxp 7290 wfrlem4 7418 oaass 7641 undifixp 7944 undom 8048 xpdom2 8055 tcrank 8747 inawinalem 9511 addcanpr 9868 ltsosr 9915 1re 10039 add42 10257 muladd 10462 mulsub 10473 divmuleq 10730 ltmul12a 10879 lemul12b 10880 lemul12a 10881 mulge0b 10893 qaddcl 11804 qmulcl 11806 iooshf 12252 fzass4 12379 elfzomelpfzo 12572 modid 12695 cshwleneq 13563 s2eq2seq 13682 tanaddlem 14896 fpwipodrs 17164 issubg4 17613 ghmpreima 17682 cntzsubg 17769 symgfixf1 17857 islmodd 18869 lssvsubcl 18944 lssvscl 18955 lmhmf1o 19046 pwsdiaglmhm 19057 lmimco 20183 scmatghm 20339 scmatmhm 20340 mat2pmatscmxcl 20545 fctop 20808 cctop 20810 opnneissb 20918 pnrmopn 21147 hausnei2 21157 neitx 21410 txcnmpt 21427 txrest 21434 tx1stc 21453 fbssfi 21641 opnfbas 21646 rnelfmlem 21756 alexsubALTlem3 21853 metcnp3 22345 cncfmet 22711 evth 22758 caucfil 23081 ovolun 23267 dveflem 23742 efnnfsumcl 24829 efchtdvds 24885 lgsdir2 25055 axdimuniq 25793 axcontlem2 25845 frgrwopreglem5lem 27184 frgrwopreglem5ALT 27186 friendship 27257 hvsub4 27894 his35 27945 shscli 28176 5oalem2 28514 3oalem2 28522 hosub4 28672 hmops 28879 hmopm 28880 hmopco 28882 adjmul 28951 adjadd 28952 mdslmd1lem1 29184 mdslmd1lem2 29185 elmrsubrn 31417 dfon2lem6 31693 funline 32249 neibastop2lem 32355 isbasisrelowllem1 33203 isbasisrelowllem2 33204 mbfposadd 33457 itg2addnc 33464 fdc 33541 seqpo 33543 ismtyval 33599 paddss12 35105 mzpcompact2lem 37314 jm2.26 37569 fmtnofac2lem 41480 rnghmsubcsetclem2 41976 rhmsubcsetclem2 42022 rhmsubcrngclem2 42028 zlmodzxzsubm 42137 ltsubaddb 42304 ltsubsubb 42305 |
Copyright terms: Public domain | W3C validator |