| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frinfm | Structured version Visualization version Unicode version | ||
| Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| frinfm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fri 5076 |
. . . . 5
| |
| 2 | 1 | ancom1s 847 |
. . . 4
|
| 3 | 2 | exp43 640 |
. . 3
|
| 4 | 3 | 3imp2 1282 |
. 2
|
| 5 | ssel2 3598 |
. . . . . . . 8
| |
| 6 | 5 | adantrr 753 |
. . . . . . 7
|
| 7 | vex 3203 |
. . . . . . . . . . . 12
| |
| 8 | vex 3203 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | brcnv 5305 |
. . . . . . . . . . 11
|
| 10 | 9 | biimpi 206 |
. . . . . . . . . 10
|
| 11 | 10 | con3i 150 |
. . . . . . . . 9
|
| 12 | 11 | ralimi 2952 |
. . . . . . . 8
|
| 13 | 12 | ad2antll 765 |
. . . . . . 7
|
| 14 | breq2 4657 |
. . . . . . . . . . 11
| |
| 15 | 14 | rspcev 3309 |
. . . . . . . . . 10
|
| 16 | 15 | ex 450 |
. . . . . . . . 9
|
| 17 | 16 | ralrimivw 2967 |
. . . . . . . 8
|
| 18 | 17 | ad2antrl 764 |
. . . . . . 7
|
| 19 | 6, 13, 18 | jca32 558 |
. . . . . 6
|
| 20 | 19 | ex 450 |
. . . . 5
|
| 21 | 20 | reximdv2 3014 |
. . . 4
|
| 22 | 21 | adantl 482 |
. . 3
|
| 23 | 22 | 3ad2antr2 1227 |
. 2
|
| 24 | 4, 23 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-fr 5073 df-cnv 5122 |
| This theorem is referenced by: welb 33531 |
| Copyright terms: Public domain | W3C validator |