| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frrlem5e | Structured version Visualization version Unicode version | ||
| Description: Lemma for founded
recursion. The domain of the union of a subset of
|
| Ref | Expression |
|---|---|
| frrlem5.1 |
|
| frrlem5.2 |
|
| frrlem5.3 |
|
| Ref | Expression |
|---|---|
| frrlem5e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuni 5334 |
. . . 4
| |
| 2 | 1 | eleq2i 2693 |
. . 3
|
| 3 | eliun 4524 |
. . 3
| |
| 4 | 2, 3 | bitri 264 |
. 2
|
| 5 | ssel2 3598 |
. . . . 5
| |
| 6 | frrlem5.3 |
. . . . . . . 8
| |
| 7 | 6 | frrlem1 31780 |
. . . . . . 7
|
| 8 | 7 | abeq2i 2735 |
. . . . . 6
|
| 9 | fndm 5990 |
. . . . . . . . 9
| |
| 10 | predeq3 5684 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | sseq1d 3632 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspccv 3306 |
. . . . . . . . . . 11
|
| 13 | 12 | 3ad2ant2 1083 |
. . . . . . . . . 10
|
| 14 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 15 | sseq2 3627 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | imbi12d 334 |
. . . . . . . . . 10
|
| 17 | 13, 16 | syl5ibr 236 |
. . . . . . . . 9
|
| 18 | 9, 17 | syl 17 |
. . . . . . . 8
|
| 19 | 18 | imp 445 |
. . . . . . 7
|
| 20 | 19 | exlimiv 1858 |
. . . . . 6
|
| 21 | 8, 20 | sylbi 207 |
. . . . 5
|
| 22 | 5, 21 | syl 17 |
. . . 4
|
| 23 | dmeq 5324 |
. . . . . . . . . 10
| |
| 24 | 23 | sseq2d 3633 |
. . . . . . . . 9
|
| 25 | 24 | rspcev 3309 |
. . . . . . . 8
|
| 26 | ssiun 4562 |
. . . . . . . 8
| |
| 27 | 25, 26 | syl 17 |
. . . . . . 7
|
| 28 | dmuni 5334 |
. . . . . . 7
| |
| 29 | 27, 28 | syl6sseqr 3652 |
. . . . . 6
|
| 30 | 29 | ex 450 |
. . . . 5
|
| 31 | 30 | adantl 482 |
. . . 4
|
| 32 | 22, 31 | syld 47 |
. . 3
|
| 33 | 32 | rexlimdva 3031 |
. 2
|
| 34 | 4, 33 | syl5bi 232 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |