Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovd Structured version   Visualization version   Unicode version

Theorem fsovd 38302
Description: Value of the operator,  ( A O B ), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets,  A and 
B. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs  |-  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) ) )
fsovd.a  |-  ( ph  ->  A  e.  V )
fsovd.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
fsovd  |-  ( ph  ->  ( A O B )  =  ( f  e.  ( ~P B  ^m  A )  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) ) )
Distinct variable groups:    A, a,
b, f    x, A, a, b    y, A, a, b    B, a, b, f   
y, B    ph, a, b
Allowed substitution hints:    ph( x, y, f)    B( x)    O( x, y, f, a, b)    V( x, y, f, a, b)    W( x, y, f, a, b)

Proof of Theorem fsovd
StepHypRef Expression
1 fsovd.fs . . 3  |-  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) ) )
21a1i 11 . 2  |-  ( ph  ->  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( f  e.  ( ~P b  ^m  a )  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) ) ) )
3 pweq 4161 . . . . . 6  |-  ( b  =  B  ->  ~P b  =  ~P B
)
43adantl 482 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ~P b  =  ~P B )
5 simpl 473 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  a  =  A )
64, 5oveq12d 6668 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ~P b  ^m  a )  =  ( ~P B  ^m  A
) )
7 simpr 477 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  b  =  B )
8 rabeq 3192 . . . . . 6  |-  ( a  =  A  ->  { x  e.  a  |  y  e.  ( f `  x
) }  =  {
x  e.  A  | 
y  e.  ( f `
 x ) } )
98adantr 481 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  { x  e.  a  |  y  e.  ( f `  x ) }  =  { x  e.  A  |  y  e.  ( f `  x
) } )
107, 9mpteq12dv 4733 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  ( y  e.  b 
|->  { x  e.  a  |  y  e.  ( f `  x ) } )  =  ( y  e.  B  |->  { x  e.  A  | 
y  e.  ( f `
 x ) } ) )
116, 10mpteq12dv 4733 . . 3  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) )  =  ( f  e.  ( ~P B  ^m  A )  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) ) )
1211adantl 482 . 2  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B ) )  -> 
( f  e.  ( ~P b  ^m  a
)  |->  ( y  e.  b  |->  { x  e.  a  |  y  e.  ( f `  x
) } ) )  =  ( f  e.  ( ~P B  ^m  A )  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) ) )
13 fsovd.a . . 3  |-  ( ph  ->  A  e.  V )
1413elexd 3214 . 2  |-  ( ph  ->  A  e.  _V )
15 fsovd.b . . 3  |-  ( ph  ->  B  e.  W )
1615elexd 3214 . 2  |-  ( ph  ->  B  e.  _V )
17 ovex 6678 . . . 4  |-  ( ~P B  ^m  A )  e.  _V
1817mptex 6486 . . 3  |-  ( f  e.  ( ~P B  ^m  A )  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) )  e.  _V
1918a1i 11 . 2  |-  ( ph  ->  ( f  e.  ( ~P B  ^m  A
)  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) )  e.  _V )
202, 12, 14, 16, 19ovmpt2d 6788 1  |-  ( ph  ->  ( A O B )  =  ( f  e.  ( ~P B  ^m  A )  |->  ( y  e.  B  |->  { x  e.  A  |  y  e.  ( f `  x
) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  fsovrfovd  38303  fsovfvd  38304  fsovfd  38306  fsovcnvlem  38307
  Copyright terms: Public domain W3C validator