| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovcnvlem | Structured version Visualization version Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fsovd.fs |
|
| fsovd.a |
|
| fsovd.b |
|
| fsovfvd.g |
|
| fsovcnvlem.h |
|
| Ref | Expression |
|---|---|
| fsovcnvlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovd.a |
. . . . . . . 8
| |
| 2 | ssrab2 3687 |
. . . . . . . . 9
| |
| 3 | 2 | a1i 11 |
. . . . . . . 8
|
| 4 | 1, 3 | sselpwd 4807 |
. . . . . . 7
|
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | eqid 2622 |
. . . . . 6
| |
| 7 | 5, 6 | fmptd 6385 |
. . . . 5
|
| 8 | pwexg 4850 |
. . . . . . 7
| |
| 9 | 1, 8 | syl 17 |
. . . . . 6
|
| 10 | fsovd.b |
. . . . . 6
| |
| 11 | 9, 10 | elmapd 7871 |
. . . . 5
|
| 12 | 7, 11 | mpbird 247 |
. . . 4
|
| 13 | 12 | adantr 481 |
. . 3
|
| 14 | fsovfvd.g |
. . . 4
| |
| 15 | fsovd.fs |
. . . . 5
| |
| 16 | 15, 1, 10 | fsovd 38302 |
. . . 4
|
| 17 | 14, 16 | syl5eq 2668 |
. . 3
|
| 18 | fsovcnvlem.h |
. . . 4
| |
| 19 | oveq2 6658 |
. . . . . . . 8
| |
| 20 | rabeq 3192 |
. . . . . . . . 9
| |
| 21 | 20 | mpteq2dv 4745 |
. . . . . . . 8
|
| 22 | 19, 21 | mpteq12dv 4733 |
. . . . . . 7
|
| 23 | pweq 4161 |
. . . . . . . . 9
| |
| 24 | 23 | oveq1d 6665 |
. . . . . . . 8
|
| 25 | mpteq1 4737 |
. . . . . . . 8
| |
| 26 | 24, 25 | mpteq12dv 4733 |
. . . . . . 7
|
| 27 | 22, 26 | cbvmpt2v 6735 |
. . . . . 6
|
| 28 | eqid 2622 |
. . . . . . 7
| |
| 29 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 30 | 29 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 31 | 30 | rabbidv 3189 |
. . . . . . . . . 10
|
| 32 | 31 | mpteq2dv 4745 |
. . . . . . . . 9
|
| 33 | 32 | cbvmptv 4750 |
. . . . . . . 8
|
| 34 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 35 | 34 | rabbidv 3189 |
. . . . . . . . . . 11
|
| 36 | 35 | cbvmptv 4750 |
. . . . . . . . . 10
|
| 37 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 38 | 37 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 39 | 38 | cbvrabv 3199 |
. . . . . . . . . . 11
|
| 40 | 39 | mpteq2i 4741 |
. . . . . . . . . 10
|
| 41 | 36, 40 | eqtri 2644 |
. . . . . . . . 9
|
| 42 | 41 | mpteq2i 4741 |
. . . . . . . 8
|
| 43 | 33, 42 | eqtri 2644 |
. . . . . . 7
|
| 44 | 28, 28, 43 | mpt2eq123i 6718 |
. . . . . 6
|
| 45 | 15, 27, 44 | 3eqtri 2648 |
. . . . 5
|
| 46 | 45, 10, 1 | fsovd 38302 |
. . . 4
|
| 47 | 18, 46 | syl5eq 2668 |
. . 3
|
| 48 | fveq1 6190 |
. . . . . 6
| |
| 49 | 48 | eleq2d 2687 |
. . . . 5
|
| 50 | 49 | rabbidv 3189 |
. . . 4
|
| 51 | 50 | mpteq2dv 4745 |
. . 3
|
| 52 | 13, 17, 47, 51 | fmptco 6396 |
. 2
|
| 53 | eqidd 2623 |
. . . . . . . . . . 11
| |
| 54 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 55 | 54 | rabbidv 3189 |
. . . . . . . . . . . 12
|
| 56 | 55 | adantl 482 |
. . . . . . . . . . 11
|
| 57 | simpr 477 |
. . . . . . . . . . 11
| |
| 58 | rabexg 4812 |
. . . . . . . . . . . . 13
| |
| 59 | 1, 58 | syl 17 |
. . . . . . . . . . . 12
|
| 60 | 59 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 61 | 53, 56, 57, 60 | fvmptd 6288 |
. . . . . . . . . 10
|
| 62 | 61 | eleq2d 2687 |
. . . . . . . . 9
|
| 63 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 64 | 63 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 65 | 64 | elrab3 3364 |
. . . . . . . . . 10
|
| 66 | 65 | ad2antlr 763 |
. . . . . . . . 9
|
| 67 | 62, 66 | bitrd 268 |
. . . . . . . 8
|
| 68 | 67 | rabbidva 3188 |
. . . . . . 7
|
| 69 | 68 | adantlr 751 |
. . . . . 6
|
| 70 | dfin5 3582 |
. . . . . . 7
| |
| 71 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 72 | 71 | ad2antlr 763 |
. . . . . . . . . 10
|
| 73 | simpr 477 |
. . . . . . . . . 10
| |
| 74 | 72, 73 | ffvelrnd 6360 |
. . . . . . . . 9
|
| 75 | 74 | elpwid 4170 |
. . . . . . . 8
|
| 76 | sseqin2 3817 |
. . . . . . . 8
| |
| 77 | 75, 76 | sylib 208 |
. . . . . . 7
|
| 78 | 70, 77 | syl5reqr 2671 |
. . . . . 6
|
| 79 | 69, 78 | eqtr4d 2659 |
. . . . 5
|
| 80 | 79 | mpteq2dva 4744 |
. . . 4
|
| 81 | 71 | feqmptd 6249 |
. . . . 5
|
| 82 | 81 | adantl 482 |
. . . 4
|
| 83 | 80, 82 | eqtr4d 2659 |
. . 3
|
| 84 | 83 | mpteq2dva 4744 |
. 2
|
| 85 | mptresid 5456 |
. . 3
| |
| 86 | 85 | a1i 11 |
. 2
|
| 87 | 52, 84, 86 | 3eqtrd 2660 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: fsovcnvd 38308 |
| Copyright terms: Public domain | W3C validator |