| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovrfovd | Structured version Visualization version Unicode version | ||
| Description: The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs |
|
| fsovd.a |
|
| fsovd.b |
|
| fsovd.rf |
|
| fsovd.cnv |
|
| Ref | Expression |
|---|---|
| fsovrfovd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovd.b |
. . . . . 6
| |
| 2 | fsovd.a |
. . . . . 6
| |
| 3 | xpexg 6960 |
. . . . . 6
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . 5
|
| 5 | 4 | adantr 481 |
. . . 4
|
| 6 | elmapi 7879 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | elpwid 4170 |
. . . . . . . . . . . . 13
|
| 9 | 8 | sseld 3602 |
. . . . . . . . . . . 12
|
| 10 | 9 | impancom 456 |
. . . . . . . . . . 11
|
| 11 | 10 | pm4.71d 666 |
. . . . . . . . . 10
|
| 12 | 11 | ex 450 |
. . . . . . . . 9
|
| 13 | 12 | pm5.32rd 672 |
. . . . . . . 8
|
| 14 | ancom 466 |
. . . . . . . . 9
| |
| 15 | 14 | anbi1i 731 |
. . . . . . . 8
|
| 16 | 13, 15 | syl6bb 276 |
. . . . . . 7
|
| 17 | 16 | opabbidv 4716 |
. . . . . 6
|
| 18 | opabssxp 5193 |
. . . . . 6
| |
| 19 | 17, 18 | syl6eqss 3655 |
. . . . 5
|
| 20 | 19 | adantl 482 |
. . . 4
|
| 21 | 5, 20 | sselpwd 4807 |
. . 3
|
| 22 | eqidd 2623 |
. . 3
| |
| 23 | fsovd.rf |
. . . . 5
| |
| 24 | 23, 1, 2 | rfovd 38295 |
. . . 4
|
| 25 | breq 4655 |
. . . . . . . 8
| |
| 26 | 25 | rabbidv 3189 |
. . . . . . 7
|
| 27 | 26 | mpteq2dv 4745 |
. . . . . 6
|
| 28 | breq1 4656 |
. . . . . . . . 9
| |
| 29 | 28 | rabbidv 3189 |
. . . . . . . 8
|
| 30 | breq2 4657 |
. . . . . . . . 9
| |
| 31 | 30 | cbvrabv 3199 |
. . . . . . . 8
|
| 32 | 29, 31 | syl6eq 2672 |
. . . . . . 7
|
| 33 | 32 | cbvmptv 4750 |
. . . . . 6
|
| 34 | 27, 33 | syl6eq 2672 |
. . . . 5
|
| 35 | 34 | cbvmptv 4750 |
. . . 4
|
| 36 | 24, 35 | syl6eq 2672 |
. . 3
|
| 37 | breq 4655 |
. . . . . . 7
| |
| 38 | df-br 4654 |
. . . . . . . 8
| |
| 39 | vex 3203 |
. . . . . . . . 9
| |
| 40 | vex 3203 |
. . . . . . . . 9
| |
| 41 | eleq1 2689 |
. . . . . . . . . 10
| |
| 42 | 41 | anbi2d 740 |
. . . . . . . . 9
|
| 43 | eleq1 2689 |
. . . . . . . . . 10
| |
| 44 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 45 | 44 | eleq2d 2687 |
. . . . . . . . . 10
|
| 46 | 43, 45 | anbi12d 747 |
. . . . . . . . 9
|
| 47 | 39, 40, 42, 46 | opelopab 4997 |
. . . . . . . 8
|
| 48 | 38, 47 | bitri 264 |
. . . . . . 7
|
| 49 | 37, 48 | syl6bb 276 |
. . . . . 6
|
| 50 | 49 | rabbidv 3189 |
. . . . 5
|
| 51 | 50 | mpteq2dv 4745 |
. . . 4
|
| 52 | ibar 525 |
. . . . . . . . 9
| |
| 53 | 52 | bicomd 213 |
. . . . . . . 8
|
| 54 | 53 | rabbiia 3185 |
. . . . . . 7
|
| 55 | fveq2 6191 |
. . . . . . . . 9
| |
| 56 | 55 | eleq2d 2687 |
. . . . . . . 8
|
| 57 | 56 | cbvrabv 3199 |
. . . . . . 7
|
| 58 | 54, 57 | eqtri 2644 |
. . . . . 6
|
| 59 | 58 | mpteq2i 4741 |
. . . . 5
|
| 60 | eleq1 2689 |
. . . . . . 7
| |
| 61 | 60 | rabbidv 3189 |
. . . . . 6
|
| 62 | 61 | cbvmptv 4750 |
. . . . 5
|
| 63 | 59, 62 | eqtri 2644 |
. . . 4
|
| 64 | 51, 63 | syl6eq 2672 |
. . 3
|
| 65 | 21, 22, 36, 64 | fmptco 6396 |
. 2
|
| 66 | xpexg 6960 |
. . . . . . 7
| |
| 67 | 2, 1, 66 | syl2anc 693 |
. . . . . 6
|
| 68 | 67 | adantr 481 |
. . . . 5
|
| 69 | 13 | opabbidv 4716 |
. . . . . . 7
|
| 70 | opabssxp 5193 |
. . . . . . 7
| |
| 71 | 69, 70 | syl6eqss 3655 |
. . . . . 6
|
| 72 | 71 | adantl 482 |
. . . . 5
|
| 73 | 68, 72 | sselpwd 4807 |
. . . 4
|
| 74 | eqid 2622 |
. . . . . 6
| |
| 75 | 23, 2, 1, 74 | rfovcnvd 38299 |
. . . . 5
|
| 76 | 75 | idi 2 |
. . . 4
|
| 77 | fsovd.cnv |
. . . . . 6
| |
| 78 | 77 | a1i 11 |
. . . . 5
|
| 79 | xpeq12 5134 |
. . . . . . . 8
| |
| 80 | 79 | pweqd 4163 |
. . . . . . 7
|
| 81 | 80 | mpteq1d 4738 |
. . . . . 6
|
| 82 | 81 | adantl 482 |
. . . . 5
|
| 83 | 2 | elexd 3214 |
. . . . 5
|
| 84 | 1 | elexd 3214 |
. . . . 5
|
| 85 | pwexg 4850 |
. . . . . 6
| |
| 86 | mptexg 6484 |
. . . . . 6
| |
| 87 | 67, 85, 86 | 3syl 18 |
. . . . 5
|
| 88 | 78, 82, 83, 84, 87 | ovmpt2d 6788 |
. . . 4
|
| 89 | cnveq 5296 |
. . . . 5
| |
| 90 | cnvopab 5533 |
. . . . 5
| |
| 91 | 89, 90 | syl6eq 2672 |
. . . 4
|
| 92 | 73, 76, 88, 91 | fmptco 6396 |
. . 3
|
| 93 | 92 | coeq2d 5284 |
. 2
|
| 94 | fsovd.fs |
. . 3
| |
| 95 | 94, 2, 1 | fsovd 38302 |
. 2
|
| 96 | 65, 93, 95 | 3eqtr4rd 2667 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |